JPL D-7669, Part 2

Planetary Data System
Standards Reference

October 15, 2002
Version 3.5

°DS
L G R

M

Planetary Data System
National Aer tics and Space Administration

P

Jet Propulsion Laboratory
Cadlifornia Institute of Technology
Pasadena, California

Table of Contents i

Chapter 1.
11
1.2
1.3
14
15
1.6
17

Chapter 2.
21
2.2
2.3
2.4
25
2.6
2.7

Chapter 3.
31
3.2
3.3
34
35
3.6
3.7
3.8
39

Chapter 4.
4.1

Chapter 5.
51
511
512
52
521
522
523
5.3
531

PDS Standar ds Reference
Table of Contents

TNEFOQUCTTON ...t 1-1
PDS DAAPOIICY ..ot essssesess s sseesssesessensssneens 1-1
PUIDOSE. ...t e s sbe e nre e 1-1
SCOPIE. .ttt ettt r et a et r e e n e e n e n e e 1-2
AUAIBNCE ...ttt ettt b e e ens 1-2
Document OrganiZatiONc..eeuereeereeiereesiesee st 1-2
Other Reference DOCUMENTS.ccviieierieriere et 1-2
Online Document Availabilityccooeiiiiniiineneee s 1-3
Cartographic Standards...........cccceeeiererere e 2-1
Inertial Reference Frame, Time Tags and UNits.........ccccceevveveiecvieennn, 2-1
Spin Axes and Prime Meridianscocooerereneneneneeeeesee e 2-1
Reference CoOrdiNates..........coovieveieririeie e 2-2
RINGS ...ttt e e e 2-3
REFEIENCE SUIMACE ..o s 2-5
MaP RESOIULION......cviiiiiieieeeeee st 2-5
REFEIEINCES......ceeieieiieee et 2-5
DATA_TYPE Valuesand Data File Storage Formats...........ccc....... 31
Data El@mMEeNtS.......ccoeieeeeeee ettt 31
D= = R 1Y 0PI 31
BiNary INTEOEIS.eoieeeieiee sttt 35
Signed vs. UNSIgNed INTEGENS.......ccuveieieeriecie ettt 35
Floating POINt FOIMELS...........ccoiiiiiiireneeeeeeseese e 3-5
Bit SIHNG Da@......ccvieeeieieiecesece et 3-6
(O ol (= g T - S 3-6
Format SPeCifiCatioNSc.cceeviiiiece e 3-6
Internal Representations Of Data TYPES........cverererieeieenieriene e 3-6
Data Objects and ProducCtS..........cccceeeereninereseseseeeeeeee e 4-1
Data Product File Configurations...........cccccueeveveieeseeieseese e seesie s 4-2
Data Product LabelS.......ccooiiiiiieeecee e 51
Format of PDS LaDEIS......ccooiiiieeceseese e 5-1

Labeling MEthOds.........ccoooviieieee e 51

LalDel fOrMEL.........coiiee e 5-4
Data Product Label COntent...........ccovvrereieiine e 5-5

Attached and Detached Labels.........ccooeeieeieieenieeeeeee e 5-5

Combined Detached LabelS........ccooeiiiiiiiescceeeee e 5-7

MiNiMal LaDEIS.....c.eoiieeeece e 5-9
Detailed Label Contents DeSCription..........ccccvevveeveieeseesieseese e 5-11

Label Standards 1dentifierS.........ccceeeveeienieneeeseese e 5-11

532
5.3.3
534
5.35
5.3.6
5.3.7
5.4

Chapter 6.

6.1
6.2
6.3
6.4
6.4.1
6.4.2

Chapter 7.

7.1
7.2
721
722
7.3
731
7.3.2

Chapter 8.

8.1
8.2
8.3
8.4
8.5

Chapter 9.

9.1

911
9.1.2
9.2

921
9.2.2
9.23
9.24
9.3

931
932
9.3.3

Table of Contents

File Characteristic Data Elements...........ccooeveeienieenence e 5-12
Data Object POINLEYS........ccvieeceece e 5-14
Data ldentification Elements...........cccevieeenieienieese e 5-17
Descriptive Data Elements..........ccccceveeveieeseccecee e 5-19
Data ObjeCt DEfiNITIONScceeeeieeeiere e 5-19
ENG SEEEEMENE ..o 5-19
Syntax for Element VAUESccooeiiiiieeee e 5-20
Data Set/Data Set Collection Contentsand Naming..........cc.ccecevenene. 6-1
Data Set/Data Set Collection Contents..........ccccevvvevenerienieeriesese e 6-2
Data Set Naming and 1dentifiCation.............cccooerenenenenienieeeeeeseeee 6-3
Data Set Collection Naming and Identification............ccccccevveveieeniennnnn, 6-4
Description of Name and ID COMPONENES.........cccooererererieeieeniesieseeseene 6-6
Format Restrictionson NAME- and ID-Class Elements..................... 6-6
Standard Acronyms and AbDreviations.............ccoceeeeieieienenenesenne 6-7
Date/Time FOrMAL........ccooeeieeiecieee et 7-1
DALE/ TIMES. ...ttt bbbt e et e nae e 7-1
DELES ... e e 7-2
ConVentional DELES..........ccouveriririeieie e nnea 7-2
NELVE DELES......ccueeieeeieeee st sre e e e sseeeesneens 7-2
I 0= S TRN 7-2
ConVeNtioNal TIMES......ccceiieieee e 7-2
NBLVE TIHMES....ceiiiieiiesieseeeeeee et sbe e e 7-3
Directory Typesand NamiNg........cccceeveeieieeieciee e 8-1
Standard DireCtory NaIMES..........ccceiviiirereneresesiese e 8-1
Formation of Directory NamES..........cccceeveveiieeseeie e 8-2
Path Formation Standard.............cccveeeereeienieneee e 8-4
TAPE VOIUMES ..ottt st re e re e 8-4
Exceptionsto These Standards...........ccooeverinenineneeeceeeeeeese e 8-4
DOCUMENTES ... e 9-1
PDS Objects for DOCUMENLS..........cccveiueeiiieiesecie e st 9-2
TEXT ODJECES.....ceiiiieeietee e 9-2
DOCUMENT OBJECES.....ccueeuiriieieieriesiesie et 9-2
Document Format DetailS.........c.ooverireeriee e 9-4
FIat ASCIH TEXL...ceiiieiieeieeieeeeeee e e 9-4
ASCII Text Containing Markup Language............cceeeeeveeneeneeneneneennes 9-5
NON-ASCI FOIMELS........eiiiieieeireeee e 9-6
RV 2= T = 1 o o U 9-6
EXAMPIES. ...t 9-6
Simple Attached label (Plain ASCH Text)ccocvvveveeeieieeeseseeens 9-6
Complex Detached Label (Two Document Versions)..........ccceeueeueenee. 9-6

Complex Detached Label (Documents Plus Graphics)ccoceeeeene 9-7

Table of Contents ii

Chapter 10.
10.1
10.11
10.1.2
10.2
10.2.1
10.2.2
10.2.3
10.3

Chapter 11.
11.1
1111
11.1.2
11.2
11.21
11.2.2
11.3
114

Chapter 12.
12.1
12.11
12.1.2
12.2
12.3
12.3.1
12.3.2
12.3.3
12.34
12.35
124
1241
12.4.2
12.4.3
1244
1245
125
1251
12.5.2
1253
1254
1255
12.5.6
12.6
12.7

File Specification and Namingccccooeverininenineseeeese e 10-1
File Specification Standardsccoeceeveeiicieriece e 10-1
SO 9660 Level 1 SpeCifiCation...........coovrererereceeieeesesesee e 10-2
SO 9660 Level 2 SPeCifiCation.........ccccveieeieeieceese e 10-2
Reserved Directory Names, File Names and Extensions....................... 10-3
Reserved DireCtory NaMESc.covecieiieceee et 10-3
Reserved FII@ NAMEScooiie e 10-3
RESEIVEd EXTENSIONS.......coieiieieieiiesie et 10-3
Guidelines for Naming Sequential Files..........cccooiiiiiiicierecc e 10-5
Media Formatsfor Data Submission and Archive.........cccceeeenneee. 11-1
CD-ROM ReCOMMENAatiONS........ccveierierieniiriesiesiesieeee e see e s 11-1
Use of Variant FOrMaLS..........ccooeeverienieneee e 11-1
Premastering Recommendationccceoveveevesiesecce e 11-2
DVD RecOMMENELIONS.........ceeerieeiriieerieeieseeie e seeeee e see e sneeeeens 11-2
Use of Variant FOMMELS.........ccovueierinene s 11-2
Premastering Recommendationc.cooevirinerienieieiesese e 11-2
Packaging Software Fileson aCD or DVDcccccvveveecvceesecie e, 11-2
Software Packaging Under Previous Versions of the Standard............. 11-2
Object Description Language Specification and Usage.................... 12-1
About the ODL SpeCifiCationcccccveveeeenieie e 12-1
IMPlEmMENtING ODLocuiiiieieeeeeee e 12-2
A\ L0 = 1 o o SRS 12-3
CRaraCLer SEL.......cceeieeeeeeeee et nee e 12-4
LexXical EIEMENtS........cccoviiiiiiceeceie e s 12-6
N LU] 7 TS 12-6
DateS and TIMES......ceieiierieieieie ettt eneas 12-8
SETNGS et 12-10
[AENEITIEIS ... e 12-11
SpPeCial CharaCtersS.........coueieiieierere et 12-12
SEBLEIMENTS ...t r e sne e snneens 12-13
LineS and RECOITS..........cccieeriereeieee et 12-13
Attribute Assignment Statement............cccevevveveere e 12-14
POINtEr SEALEMENE......eeeieee e 12-14
(O12N]=(OF IS 1= 1= 111 | SRRSO 12-15
GROUP SEALEMENTccuvceieeeeieieriese e sne s 12-15
VBIUBS ...ttt 12-17
NUMEITC VAIUES ...ttt 12-17
UNItS EXPIrESSIONS.....ccvieieeieeiteeiesteesteeeesseestesaesseensesseessesnsesseesseensens 12-17
TEXt SING VAIUBS ..o 12-18
Symbolic Literal VaUESccocceeeeiece e 12-20
SEOUENCES. ...ttt ettt sttt s n e n s e sn e sneen e nnenne s 12-21
S £ RSSO 12-21
ODL SUMIMEIY ...ttt e 12-22
Differences Between ODL VEISIONScccceeererieiieneneniesieseesiesiennens 12-24

iv Table of Contents

12.7.1 Differences from ODL Version L.......ccccoccvveeveneeneeieseeneeseeseeeeens 12-24
12.7.2 Differences from ODL Version O........cccecevererinieenienesesesesiesieneens 12-25
12.7.3 ODL/PVL USAQE.....cceieiieiieieieeesiese e sie e sseeeeee e saessessessesnesnens 12-25
Chapter 13. PDS ODJECIS/ GrOUPS.ccuereeuirieriieieientesie st sne e 13-1
131 Generic and Specific Data Object Definitions............cccocevveieveeiiennns 131
1311 Primitive ODJECES ..o 13-2
13.2 Generic and Specific Data Group Definitions...........cccccccevvevevieeieenns 13-3
1321 Implementation of Group Statements...........ccooeveeveienenerene e 13-4
Chapter 14. POINtEr USAQE......ccciceeiiieieiierie et ese e steete s e sae e re e se e sneenesneennens 14-1
141 TYPES OF POINTEIS ... 14-1
14.1.1 Data L ocation Pointers (Data Object Pointers)..........ccoevveeveeceesveenee. 14-1
14.1.2 INCIUAE POINLEN'S ...t 14-1
14.1.3 Related Information Pointers (Description Pointers).........cccccveveneee. 14-2
14.2 Rules for Resolving POINErScooiiiiiiiiecceeee e 14-3
Chapter 15. RECONd FOIMALS......ccoiiiiiieieieiieie e 151
15.1 FIXED_LENGTH RECOIUS.......ccvririieieierienie e 15-1
15.2 STREAM RECOIUS.....cueeieeieeieeieeiesieesie et ee e e ee e saeenessreeneesneens 15-2
15.3 VARIABLE_LENGTH RECOIS.......cccoriiuirierienieienieniesie e 15-2
154 UNDEFINED RECOIUS........ccieuieiieieiesierie e sie st see e sneens 15-3
Chapter 16. SFDU USAQE......ccccoiiiriiriiitirieeiieeeee et sne e 16-1
16.1 The ZI SFDU OrganiZationccceeveveeeeseese e seesie e 16-2
16.2 The ZK1 SFDU OrganiZation...........ccoererereeieeieenieseseesiesee s 16-5
16.3 EXAMPIES. ... e 16-7
16.4 Exceptionsto this Standard.............cocvereieiiiieiceeseeeeeeees 16-8
Chapter 17. Usage of N/A, UNK and NULL ... 17-1
171 Interpretation of N/A, UNK, and NULLccccevveiiieeieceeceeee, 17-1
17.1.1 A ettt ne e et et e ntenrenaenrenneas 17-1
17.1.2 UNK ottt sttt e et st nnas 17-1
17.1.3 INULL ottt r e e e enaennen 17-1
17.2 Implementation Recommendations for N/A, UNK, and NULL 17-3
Chapter 18. UnitSof Measur€mMeNt..........ccceceeieeiere i 18-1
18.1 IS 0 T S 18-1
Chapter 19. Volume Organization and Naming.........ccccovrerererienieeneneseseseeeee 19-1
191 VOIUME SEE TYPES. ...ttt et 19-1
19.2 Volume Organization GUIAEINES ... 19-7
19.3 Description of Directory Contents and Organizationccccccueeuee. 19-7
1931 ROQOT DIrectory FIlES........coouoiiiiiesesee e 19-8

19.3.2 Required SUDAITECLONIES..........ccveieeieeciece e 19-8

Table of Contents \%

19.3.3
194
194.1
195
1951
19.6
19.7

Chapter 20.
20.1
20.2
20.3
204
20.5
20.6

Appendix A.
Al
A2
A3
A4
A5
A.6
A7
A8
A9
A.10
All
A.12
A.13
A.l4
A.15
A.16
A.17
A.18
A.19
A.20
A2l
A.22
A.23
A.24
A.25
A.26
A.27
A.28
A.29

Optional SUDAITECLONEScceeiveiiierieriesereee e 19-11
VOlIUME NAMING....c.eiiieiece ettt nre e 19-17

VOIUME ID ..ot 19-17
Volume Set NaMIiNG.....c..ccuiiieiece e 19-18

VOIUME SELID ... 19-18
Logical VolumME NaMING......cccccoviieiieieiee et 19-19
Exceptionsto ThisStandardccceoeieienini e 19-19
ZIP COMPIESSION ...ouiiiieetesieeteeie et sbe e e e see e sre e sne e 20-1
ZIP SOfTWEIE......eeeeeeie ettt et et esreeneeneenneas 20-1
ZIPFIELEDEIS ... 20-2
Packaging Zip Archiveson VOIUMESccccovveveevecciesece e, 20-3
Label EXAMPIE ..o 20-3
ZIPINFO.TXT EX@MPIE ..ot 20-4
AdditioNal FIlES........ooeeeeeeceeee e e 20-5
PDS Data Object DEfiNitioNS........cc.coerirerenenieeeeeeseese e A-1
ALTAS . ettt A-3
ARRAY (Primitive Data ODJECL).......ccccoeriririerieieeeeesese e A-4
BIT COLUMN ...ttt A-8
BIT ELEMENT (Primitive Data Obj€Ct)........ccoeverereneneircreereeene A-11
CATALOG ...ttt sttt nne e A-12
COLLECTION (Primitive Data ObJECt).......cccevreeieiereniesieseeseeeieeeee A-15
COLUMN ..ottt st e A-16
CONTAINER ..ottt et A-20
DATA PRODUCER........cciiiiresise st A-27
DATA SUPPLIER........coi ettt A-29
DIRECTORY ...ttt sttt st A-31
DOCUMENT ...ttt st ens A-33
ELEMENT (Primitive Data ODJect)ccovveeeeieiiieie e A-36
I A-38
GAZETTEER_TABLE.......o it A-42
A D A-52
HISTOGRAM ..ottt et A-54
S 10 2 A-57
IMAGE ..ottt ettt nb e A-61
INDEX_TABLE ...ttt A-66
Y I I RS A-71
QUBE..... et neenens A-74
SERIES ...t A-82
SPECTRUM ..ottt sneenennens A-87
SPICE KERNEL ..ottt A-90
TABLE ... A-93
LI =2, S PRSI A-114
VOLUME ...ttt nne e A-116
WINDOWV ...ttt st st s A-123

Vi

Appendix B.
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.28
B.29
B.30
B.31
B.32
B.33
B.34
B.35
B.36
B.37
B.38

Appendix C.
C.l
C.2

Table of Contents

Complete PDS Catalog Object Setcccccveveveeiecieseese e B-1
AN IS SRS B-4
DATA_SET_COLL_ASSOC DATA_SETS..ccioieeeeereeeesereeesienens B-10
DATA_SET COLL_REF INFO ... se e, B-11
DATA_SET_COLLECTIONcotiirieieiiieieesiesieeee et B-12
DATA_SET COLLECTION_INFO.....oiieiiieeeeeeeeeeeeeeese e, B-15
DATA _SET _HOST ...ttt B-17
DATA_SET INFORMATIONoooiieeeee et e B-18
DATA_SET_MAP_PROJECTION.......ccccoveiririenieeeeneseeesie e B-21
DATA_SET _MAP_PROJECTION_INFOcoovmieeeeeeeereseeeesesenne. B-23
DATA_SET_REFERENCE_INFORMATIONcccccoovnriireiieinnsinnns B-25
DATA_SET TARGET ...t B-26
DS MAP_PROJECTION_REF_INFO......cccootieeieeneieese e B-27
IMAGE_MAP _PROJECTION ...ttt B-28
INSTRUMENT ..ottt B-33
INSTRUMENT HOST ...t B-37
INSTRUMENT_HOST_INFORMATIONccooiiieiiineieeneeeesie e B-39
INSTRUMENT _HOST _REFERENCE INFO......cccooiiiieeeiee e B-40
INSTRUMENT _INFORMATION.......cccoiiiiiieinienieesie e B-41
INSTRUMENT _REFERENCE _INFO.......ccooiiieiee e B-44
INVENTORY ..ottt sttt B-45
INVENTORY _DATA _SET INFO....coii e B-47
INVENTORY_NODE_MEDIA_INFO....ccooieiiireieeseeee e B-48
MISSION ... e e e e e e e e e e e neeas B-49
MISSION _HOST ...ttt e B-54
MISSION_INFORMATIONceeieecee et B-55
MISSION_REFERENCE_INFORMATIONcccooeiiiirieenienieeeesieens B-57
MISSION _TARGET ...t B-58
PERSONNELoviiitiiieieisiesieee et B-59
PERSONNEL _ELECTRONIC MAILoooiieeeeeee e B-61
PERSONNEL_INFORMATIONociiiiieieesienieeee e B-62
REFERENCE...... .o B-63
SOFTWARE ..ottt ettt ee e sne e B-70
SOFTWARE_INFORMATIONooiiiieccee e B-72
SOFTWARE_ONLINE ..ottt B-73
SOFTWARE _PURPOSE ..o B-74
LI {1 RS B-75
TARGET _INFORMATION ...ttt eeee e B-77
TARGET_REFERENCE_INFORMATION......cccooiiviieereieeeesieee B-78
Internal Representation of Data TYPES.......cccccveveeeeveeviecee e C-1
MSB INTEGER.........oo ot C1

MSB_UNSIGNED_INTEGER........cccooiiiiiiriie e C-2

Table of Contents vii

C3
CA4
C5
C.6
C.7
C.8
C.9
C.10
cl
C.12

Appendix D.
D.1
D.1.1
D.1.2
D.2
D.21
D.3
D.31
D.3.2

Appendix E.
E.l
E.2
E.3
E.4

Appendix F.
Appendix G.

Appendix H.
H.1

LSB _INTEGERcoeieiee ettt C-3
LSB_UNSIGNED_INTEGER........cccoiiiirinineneneeee e C-5
] = N SRS C-6
[EEE_COMPLEX ..ottt sttt C-8
O = A S C-9
PC_COMPLEX ..ottt C-11
VAX_REAL, VAXG REAL ..ottt C-12
VAX_COMPLEX, VAXG_COMPLEXcccecvmiririeenenesese s C-15
MSB_BIT_STRINGcociieieece st C-15
LSB_BIT_STRINGooiiiiieiee e C-16
Examples of Required Files.........cccooveieiieveece e D-1
AAREADME.TXT oottt D-1
ANNOLALEA OULIINE.......eieiiieieieee s D-1
EXAMPIE ... D-2
INDXINFO.TXT 1ottt D-6
EXAMPIE ... D-6
SOFTINFO. TXT .ttt see ettt sre s enens D-7
(O 011 17 0 D-7
EXAMPIE ... e e D-8
NAIF TOOLKIT DIRECTORY STRUCTURE.......cccooeiirrrirriene E-1
NATF DITECLOIY ...ttt E-1
TOOLKIT DITECLONY ..eveeivecie ettt E-1
USING the NATF TOOIKITc.eiiiieieicsiereeeeeeeeeee s E-5
NAIF's File Naming Conventions...........ccccueeeeieseeseeieeseese e sveesne s E-5
0])Y/ 1 0 L TR F-1
SAVED Dal@....ccceiieiieieieiesie ettt ens G-1
PDS Data Group Definitions.........ccecveeeveeiecie e H-1

PARAMETERS ... H-3

Change Log

Version

3.1

viii

Standar ds Reference Change Log

Section
1.1

2.3

24

3.0

3.2
523

6.3

6.4

10.0, ALL

10.2.1
1254.2
13.2

14

17

19
Appendix A

Appendix A

Change

PDS Data Policy added

Reference coordinate standard expanded to support body-
fixed rotating, body-fixed non-rotating, and inertial
coordinate systems.

Ring coordinate standard added.

List of internal representations of data types moved to
Appendix C

EBCDIC_CHARACTER added to PDS Standard data types
Minimal label option described

Data set collection naming -- data processing level component
made optional

Data set naming -- added support for SPICE and Engineering,
where no instrument component applies

PDS use of UNIX/POSIX forward slash separator for path
names. VM S-style bracket notation replaced.

Required file names for catal og objects included
PDS use of double quotes clarified

Use of Primitive objects described

New chapter -- Pointer Usage

New chapter -- PDS Usage of N/A, UNK, and NULL
Logical Volume organization added

Primitive Objects added

Header object -- required and optional keyword lists changed
Container object -- Column no longer a requried sub-object

iX Change Log

Appendix B Streamlined Catalog Object Templates with examples replace
3.0 set

Appendix C New appendix containing internal representations of data
types (moved from Chapter 3)

Appendix D Outline and example for AAREADME.TXT added

Appendix E Version 3.0 Acronyms and Abbreviations modified and
moved to this Appendix. Spelling and Word Usage section
deleted.

Index The document now features an index.

ALL No other substantive changes have been made to the

standards since the release of Version 3.0. Throughout the
document, clarifications have been made, typos corrected,
some sections have been rearranged, and new examples have

been supplied.
Version Section Change
32 Release Date: 7/24/95
5.1.2 Label format discussion added

Noted that valuesin labels should be upper case (except
descriptions). Fixed examplesin Appendix A.

5.2.3, Appendix A Noted that for data products using minimal labels,
DATA_OBJECT_TYPE = FILE in the Data Set Catalog
Template

6 Added target IDs for DUST and SKY

Added instrument component values SEDR and POS
Noted that Data Set and Data Set Collection I1Ds and Names
should be upper case. Fixed examples.

8and 19 Listed CALIB and GEOMETRY as recommended directory
names (as opposed to required).

8.2 SOFTWARE Subdirectory naming recommendation added

9.1 Volumes may contain multiple versions of VOLINFO

Change Log

921

101

10.2

10.2.3and 5.1

1111

1112

11.1.3

1412

15

151

15.3

155

17.2

18

Increased maximum line length in text file to 78 characters
plus CR/LF

Clarified file name spcification. Noted that file name must be
upper case and that full stop character required

Added recommendation that file extension identify the data
type of afile.

Added .QUB as reserved file extension for spectral image
qubes.

Added SPICE file extensions to reserved file extension list.
catalog pointer name and file name: SWINV.CAT

Added LABINFO.TXT to list of required xxxINFO.TXT files.
Added recommended xxx INFO.TXT file names for
SOFTWARE subdirectories.

added note that detached label file (*.LBL) should have the
same base name as the associated datafile

Added PDS Extended Attribute Record (XAR) policy

Added recommendation that CDs be premastered using single-
session, single-track format.

Added section on Packaging Software files on a CD-ROM
Added new example of structure pointer

Added recommendation that for VAX/VM S-compatible CDs,
fixed length and variable length files be an even number of
bytes. Removed reference to VMS restriction to an even

number of bytesin section 15.2

Removed discussion of use of BLOCK_BYTES and
BLOCKING_TY PE (since this data element not in PSDD)

Added notation that CR/LF is required line terminator for
PDS label and catalog files

Reworded first sentence.

Allow definition of numeric constants representing N/A,
UNK, and NULL to be defined for use in an INDEX table.

replaced reference to PDS V1.0 with a general statement

Xi

19

19

19.2

19.3

193

19.4, Appendix A
1951

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

Appendix B

Appendix B

Appendix D

Appendix D.1

Change Log

Added SOFTWARE subdirectory recommendations
Recommend that an archive volume be based on asingle
version of the PDS standards. V olume organization guidelines

added.

Clarified requirements for files & directories when logical
volumes used

INDEX table standard update

use of axx- and bxx- prefixesin required file names
clarified

fixed examples--V olume and Volume set names capitalized
Volume set 1D formation rule modified.

updated COLUMN, BIT_COLUMN, and HISTOGRAM
objects required and optional keyword lists to be consistent
with Table 3.1

Added ALIAS and INDEX_TABLE objects

Added examples of COLUMN objects having ITEMs
Clarified use of ROW_SUFFIX_BYTES and
ROW_PREFIX_BYTESfor SPARE fieldsin Tables with

fixed length records

Clarified the requirements for VOLUME objects for Logical
volumes

Fixed examples using HEADER object to conform to current
standard. Modified description of Header object to eliminate
confusion..

Inventory, Software_Inventory and Target templates added

Removed incorrect example of use of Personnel template

INDXINFO.TXT and SOFTINFO.TXT outlines and
examples added

Modified example of AAREADME.TXT toinclude ruleson
how pointer statements are resolved.

Change Log Xii

Appendix E and F Added Appendix E - NAIF Toolkit Directory Structure.
Acronyms and Abbreviations moved to Appendix F.

ALL corrected typos, clarified text, added rationale for some
standards, updated examples to conform to latest standards

Change Log Version 3.1 change log updated--some items were missing
Version Section Change
3.3 Release Date: 6/1/99

1.0 Added DVD as hew medium

13 Changed Version to 3.3

16 Updated/corrected references

17 Added reference to PDS web page

20 Added definition for IAU

Clarified text

2.3 Corrected punctuation

2.7 Fixed punctuation for references

34 Corrected punctuation

3.7 Corrected spelling and punctuation

4.0 Added Section headers for Primary & Secondary Objects

4.1 Corrected paragraph formatting

5.1.2 Added paragraph about ASCII character set

Added paragraph about Label Padding
Fixed math in calculating start byte of 8th record
Aligned keyword/values

5.2.2 Corrected grammar
523 Removed """in the Data Set catalog template.
531 Changed Version to 3.3
5.3.2 Modified last paragraph
533 Listed examples of primary and secondary objects
5.3.3.2 Changed "bottom’ to ’ following’
534 Removed AMMOS as an example
5341 Removed SPACECRAFT_NAME as valid keyword
5.34.3 Removed SPACECRAFT_NAME as valid keyword.
535 Changed PDS has developed and continues to develop...
Added example for a pointer (*DESCRIPTION)
5.3.6 Aligned keyword/values
Clarified statement
537 Changed: needed for conformance
6.0 Prioritized organizations that PDS works with
6.1 Provided definition for Data Set Collection and removed

MGN example.

Xiii Change Log

Corrected spelling (considerations) and punctuation

6.2 Added acronyms for data set name and identifier
6.3 Changed paragraph from future tense to past tense
6.4 Section 5 - comets

Section 6 - added acronyms to list
Section 6 - corrected spelling (ephemeris)
Section 7 - corrected spelling (gravity)
Section 8 - clarified version number rules

7.0 Updated paragraph
7.1 Clarified statements about date/time formats
721 Added PDS preference for convention
731 Corrected grammar
Reformatted paragraph
7.3.2 Corrected grammar
Updated paragraphs
8.1 Corrected grammar (standards directory)

Added EXTRAS directory

Added Browse and Data directory descriptions
8.2 Section 4 - Better examples of directory names

Section 5 - Reformatted paragraph

Section 8 - Corrected spelling and grammar

8.3 Changed to valid keywords

84 Corrected grammar (data are)

9.0-9.33 Complete rewrite of Documentation Standard
Added HTML standards

10.0-10.1 Added 1SO 9660 Level 2 description
Added ";1" to Level 1 description

10.21 Clarified required file names paragraphs
Added TARGET_CATALOG pointer to list

10.2.2 VOLDESC.SFD file becomes deprecated

10.2.3 Described detached label
Corrected grammar (its)

10.2.4 Added extensions and changed SPICE extensions
Corrected spelling (postscript) and grammar (data that have)

1111 Changed chapter name

121 Aligned equal signs

12111 Added reference

12.2 Reformatted paragraph

12.3 Spelling

1231 Corrected punctuation (1.234E2)

12.31.2 Corrected value (16#+4B#)
Reformatted paragraph

12.3.1.3 Corrected value (1.234E3)

12.3.2 Updated paragraphs

12321 Clarified date format

12.3.2.3 Clarified paragraph

Change Log

12324
12.3.25
123251
12331
12.34
12.35
124
1241

1242
1252

12531

1254

12541
1255

1256

12.6
12.7
1271
12.7.2
131
1411
1412

14.2
15.0
15.2
153
16.0
16.2

171
17.1.2
17.2
18.0
191

19.3

Xiv

Changed year to 4 digits

Updated paragraph

Corrected value (1990-158T15:24:122)
Corrected value ("::=")

Added examples

Corrected punctuation and grammar (units)
Corrected punctuation

Corrected grammar (the the)

Aligned equal signs

Aligned egual signs

Reformatted asterisks to not be superscript
Corrected value (60.15)

Corrected grammar (affect)

Reformatted paragraphs

Corrected vaue (10)

Added valid quoted strings

Clarified paragraph

Reformatted asterisk to not be superscript
Corrected spelling (eccentricity)

Changed to valid keyword

Corrected value (removed 1st bracket "[")
Changed to valid keyword

Reformatted paragraphs

Reformatted paragraphs

Corrected grammar (sections detail)
Corrected grammar ("isthat are")

Added required keywords to definition
Corrected grammar (occurs)

Corrected punctuation

Corrected value ("STRUCTURE)
Changed paragraph numbering
Reformatted pointer rules

Reformatted paragraph and table
Changed paragraph numbering

Changed paragraph numbering

Corrected grammar

Clarified paragraph

Changed case of #mark#

Changed case of title (and)

Corrected punctuation (information)
Corrected case of title (and)

Corrected S| Units (electricity potential, etc)
Updated paragraph

Corrected grammar (volume types)
Corrected grammar (up to the)

Corrected grammar (an SFDU)

XV

1941

19.5

1951

19.7
20.0-20.6
Appendix A

A.l

A.2

A3

A5

A7
A.8
A.10
A1l

A.12

A.13
A.14

A.15

A.16

A.18
A.19

Change Log

Corrected spelling (global)

Updated Catalog and Index definitions

Added description of the EXTRAS directory

Added Preferred Method for supplying PDS catalog objects
Corrected grammar (data have been)

Changed case of value (ID)

Corrected spelling (radiometry)

Corrected value (VOLUME_SET_NAME)

Corrected value (VOLUME_SET _ID)

Reformatted paragraph

Corrected case of value (IDs)

Complete rewrite of Zip Compression

Added URL to Cold Fusion pages

Updated definition for ALIAS

Corrected spelling (subobject)

Added and changed Optional keywords

Reformatted paragraphs

Corrected spelling (the time)

Changed Optional keywords

Corrected spelling (created)

Added TARGET to Optional Objects

Clarified use of CATALOG.CAT

Formatted paragraph

Formatted paragraph

Changed Optional keywords

Updated paragraph

Changed case of keyword val ues to uppercase
Corrected grammar (on @)

Corrected grammar (on the medium)

Removed incorrect statements

Updated example

Changed Optional keywords

Removed a Required keyword

Added Optional keywords

Changed value to keyword (GAZETTEER_TABLE)
Corrected grammar (the breath & upper right)

Added Optional Keywords section

Added Optional Objects section

Added trailing double quote to DESCRIPTION section
Corrected paragraph to reflect proper file name
Changed val ue to be enclosed in double quotes

Added Required and Optional Keywords and Objects sections
Added BAND_NAME keyword

Added Optional keyword

Changed values to be keyword (CHECKSUM)
Changed values to be keyword (SCALING_FACTOR)

Change Log

A.20

A.21

A.23

A.24
A.26

A.27

A.28

A.29

Appendix B

B.1
B.2

B.3

B.4

B.5

B.6

B.7

B.8
B.10

B.11

Appendix C

XVi

Changed paragraphs

Changed case of keyword values to uppercase
Reformatted paragraphs

Removed Optional Keyword

Added Optional Objects

Corrected example (See additional examplein A.27.1)
Added example for CORE_ITEM_TYPE

Corrected FILE_RECORDS to be accurate
Corrected invalid keyword (SUB_SOLAR_AZIMUTH)
Corrected grammar (data that vary)

Corrected grammar (data are)

Corrected punctuation (The Tookit)

Corrected grammar (meta-data which are)

Updated section numbers to reflect location (spares)
Repaired exampl es (byte lengths)

Line length to 72 chars

Added Required and Optional Objects

Repaired example

Updated Optional keyword

Changed case of keyword values to uppercase
Changed paragraph

Changed text description length to be 80 characters from 72
Added text formatting standards

Corrected punctuation

Repaired example

Reformatted paragraph

Reformatted and repaired example

Corrected spelling (DESCRIPTION)

Reformatted paragraph

Reformatted and repaired example

Corrected spelling (description & instrument)
Reformatted paragraph

Reformatted and repaired example

Corrected grammar (properties of the)

Reformatted paragraph

Reformatted and repaired example

Repaired example

Reformatted paragraph

Reformatted and repaired example

Repaired example

Corrected spelling (package)

Replaced example of SOFTWARE_INVENTORY template
Corrected grammar (target catalog)

Corrected grammar (SURFACE_GRAVITY)
Repaired example

Minor corrections throughout text

XVil
C5
C.10
Appendix E
Appendix F
Appendix G
Version Section
34

Change Log

Corrected spelling (exponent-as-stored)
Corrected spelling (imaginary)
Corrected sentence (source code for)
Corrected spelling (spacit)

Corrected grammar (These data are)
Corrected punctuation

Corrected CD-WO nomenclature
Added DE (Data Engineer)

Corrected spelling (Principal)

Added SAVED Data as new section

Change

Release Date: 06/15/2001

Technical editing of the entire document (Chapters 1-20, Appendices A-G) was performed by Anne Raugh under
contract to JPL. This editing focused on correcting awkward language, making examples consistent with the text,
clarifying apparent internal inconsistencies, and in general ensuring a more readable document. Substantive changes
to the standards themselves were specifically prohibited. Document changes made by Raugh were reviewed by Lyle
Huber (ATMOS) and Ron Joyner (CN). Cases in which the intention of the original document could not be
determined by the above team were referred to Steve Hughes (CN), who acted as both historian and final arbiter.

On May 04, 2001, Ann Raugh, Richard Simpson, Lyle Huber, Steve Hughes, and Ron Joyner met at New Mexico
State University to discuss and arbitrate the final set of changes to be incorporated into this document.

Version Section

3.5

8.2(2)

10.1.2

12.45

13

1941

1951
A.194
A.29

B.1.6

Change

Release Date: 10/15/2002

Updated directory length to be 31 charactersin length
Updated directory length to be 31 charactersin length

Added definitions for using Groups

Updated OBJECTS/GROUPS chapter to reflect using Groups

Changed length of VOLUME_ID from 9 charsto 11 chars
Changed formation rule for VOLUME_SET _ID

Added WINDOW as optional object of the IMAGE object
New WINDOW object chapter

Added data_set_terse_desc and archive_status

Change Log

B.23.6

B.31

Appendix H

XViii

Changed example to include multiple mission_alias_name(s)

Amended Reference section to include more definitive

language on what is appropriate to cite, what is not, and how
to cite each type of reference.

Added PDS DATA GROUP DEFINITIONS as new section.

Chapter 1. Introduction 1-1

Chapter 1. Introduction

In order for planetary science datato be useful to those not directly involved in its creation, sup-
porting information must be made available with the data to allow effective use and
interpretation. The exchange of data is increasingly important in planetary science; thusthereis a
need for establishment and enforcement of standards regarding the quality and completeness of
data. Electronic communication has become more sophisticated, and the use of new media (such
as CD-ROMs and DVD) for data storage and transfer requires additional formatting standards to
ensure long-term readability and usability. To these ends, the Planetary Data System (PDS) has
developed a data set nomenclature consistent across discipline boundaries, as well as standards
for labeling data files.

1.1 PDSData Poalicy

Only data that comply with PDS standards will be published in volumes labeled “ Conforms to
PDS Standards’. When the PDS assists in the preparation of data published in a non-compliant
format, PDS participation should be acknowledged with the statement such as “funded by PDS".
The PDS Management Council makes decisions on compliance waivers. Non-compliant data
sets will be incorporated into the PDS archives only under unusual circumstances.

1.2 Purpose

This document is intended as a reference manual for use in conjunction with the PDS Data
Preparation Workbook and the Planetary Science Data Dictionary. The PDS Data Preparation
Workbook describes the end-to-end process for submitting data to the PDS and gives instructions
for preparing data sets. In addition, a glossary of terms used throughout the documentation is
included as an appendix to the Workbook. The Planetary Science Data Dictionary (PSDD)
contains definitions of the standard data element names and objects. This Standards Reference
defines all PDS standards for data preparation.

1.3 Scope

The information included here constitutes Version 3.4 of the Planetary Data System data
preparation standards for producing archive quality data sets.

1-2 Chapter 1. Introduction

1.4 Audience

This document is intended primarily to serve the community of scientists and engineers
responsible for preparing planetary science data sets for submission to the PDS. These include
restored data from the era prior to PDS, mission data from active and future planetary missions,
and data from earth-based sites. The audience includes personnel at PDS discipline and data
nodes, mission principal investigators, and ground data system engineers.

1.5 Document Organization

The first chapter of this document, “Chapter 1 — Introduction”, provides introductory material
and citations of other reference documents. The remaining chapters provide an encyclopedia of
data preparation standards, organized aphabetically by standard title.

1.6 Other Reference Documents

The following references are cited in this document:

??Batson, R. M., (1987) “Digital Cartography of the Planets: its Status and Future”, Photo-
grammetric Engineering & Remote Sensing 53, 1211-1218.

??Davies, M.E., et al. (1991) “Report of the IAU/IAG/COSPAR Working Group on Carto-
graphic Coordinates and Rotational Elements of the Planets and Satellites: 1991”,
Celestial Mechanics, 53,377-397.

??Greeley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Press,
Cambridge, 296p.

??Guide on Data Entity Naming Conventions, NBS Special Publication 500-149.

??Planetary Science Data Dictionary, JPL D-7116 Rev D, July 15, 1996, (Available from
the PDS).

??Planetary Data System Data Preparation Workbook Version 3.1, JPL D-7669 Part 1, Feb-
ruary 17, 1995, (Available from the PDS)

??Issues and Recommendations Associated with Distributed Computation and Data
Management Systems for the Space Sciences, National Academy Press, Washington, DC,
111p.

International Standards Organization (1SO) References.

?2?1S0 9660:1988 “Information Processing - Volume and File Structure of CD-ROM for
Information Exchange”, April 15, 1988.

Chapter 1. Introduction 1-3

??1S0 646:1991 ASCII character set.
??1S0 8601:1988 “ Data Element and Interchange Formats — Representations of Dates and
Times’
SFDU and PVL References:

??Sandard Formatted Data Units - Sructure and Construction Rules, CCSDS 620.0-R-
1.1c, May 1992.

?? Sandard Formatted Data Units - A Tutorial; CCSDS 620.0-G-1, May 1992.
??Parameter Value Language Specification (ccsd0006); CCSD 641.0-R-0.2, June 1991.
??Parameter Value Language -- A Tutorial; CCSDS 641.0-G-1.0, May 1992.

1.7 Online Document Availability

The Planetary Science Data Dictionary, Planetary Data System Data Preparation Workbook,
and this document, the Planetary Data System Standards Reference, are available online.
Information on accessing these references may be found on the PDS website at the following
URL:

http://pds.ipl.nasa.qgov

To obtain a copy of these documents or for questions concerning these documents, contact the
PDS Operator (at PDS_ OPERATOR@)jpl.nasa.gov, 626-744-5579) or a PDS data engineer.

The examples provided throughout the chapters and appendices are based on both existing and
planned PDS archive products, modified to reflect the current version of the PDS Standards.
Data object definitions are refined and augmented from time to time, as user community needs
arise, so object definitions from products designed under older versions of the Standards may
differ significantly. To check the current state of any object definition, consult a PDS data
engineer or thisURL.:

http://pdsproto.jpl.nasa.gov/ddcolstdval/newdd/top.cfm

Additional examples may be obtained by contacting a Data Engineer.

1-4

Compliance waivers, 1-1

, 1-1
Data Preparation Workbook, 1-1
data set
Non-compliant, 1-1
Management Council , 1-1
object definitions, 1-3
Planetary Science Data Dictionary, 1-1
, 1-2

, 1-1
Waivers (compliance) , 1-1

Chapter 1. Introduction

Chapter 2. Cartographic Standards 2-1

Chapter 2. Cartographic Standards

The following cartographic data standards were developed through an iterative process involving
both the NASA Planetary Cartography Working Group (PCWG) and the PDS. Members of the
PCWG aso serve on the key International Astronomical Union (IAU) committee that formulates
these standards for international adoption. It is the intention of the PDS to keep its own
cartographic standards in line with those of the PCWG, and in turn the IAU.

The cartographic standards used in any particular data set should be identified and, where
helpful, documented on the archive volume.

2.1 Inertial Reference Frame, Time Tags and Units

The Earth Mean Equator and Equinox of Julian Date 2451545.0 (referred to as the J2000 system)
is the standard inertia re ference frame. The Earth Mean Equator and Equinox of Besselian 1950
(JD 2433282.5) is aso supported because of the wealth of previous mission data referenced to
this system. (The transformation between the two systemsis well defined.)

The standard format for time tags is UTC in year, month, day, hour, minute and decimal seconds,
although Julian dates are also supported.

The standard units are SI metric units, including decimal degrees.

2.2 Spin Axesand Prime M eridians

The IAU-defined spin axes and prime meridians defined relative to the J2000 inertial reference
system are the standard for planets, satellites and asteroids where these parameters are defined.
For other planetary bodies, definitions of spin axis and prime meridian determine d in the future
should have the body-fixed axis aligned with the principal moment of inertia, with the North

Pole defined as lying along the spin axis and above the Invariable Plane. Where insufficient
observations exist for a particular body to determine the principal moment of inertia, coordinates
of a surface feature will be specified and these used to define the prime meridian. Note that some
small, irregular bodies may have chaotic rotations and will thus need to be handled on acase -by-
case basis.

2.3 Reference Coordinates

There are three basic types of coordinate systems: body-fixed rotating; body-fixed non-rotating;
and inertia. A body-fixed coordinate system is one associated with the body (e.g., a planet or
satellite). The body-fixed system is centered on the body and rotates with the body (unlessit isa
non-rotating type), whereas an inertial coordinate system is fixed at s ome point in space.

To support the descriptions of these various reference coordinate systems, the PDS has defined
the following set of data elements (See the Planetary Science Data Dictionary for complete
definitions.):

2-2 Chapter 2. Cartographic Standards

COORDINATE_SYSTEM_TYPE
COORDINATE_SYSTEM_NAME
LATITUDE

LONGITUDE
EASTERNMOST_LONGITUDE
WESTERNMOST_LONGITUDE
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
POSITIVE_LONGITUDE_DIRECTION

Currently, the PDS has specifically defined two types of body -fixed rotating coordinate systems:
planetocentric and planetographic. However, the set of related data elements are modeled such
that definitions for other body-fixed rotating coordinate systems, body-fixed non-rotating and
inertial coordinate systems can be added as the need arises. Contact a PDS data engineer for
assistance in defining a specific coordinate system.

The definition of planetographic longitude is dependent upon the rotation direction of the body,
with longitude defined as increasing in the direction opposite to the rotation. That isto say, the
longitude increases to the west if the rotation is prograde (or eastward) and vice versa. Table 2.1
lists the rotation direction (prograde or retrograde) of the primary planetary bodies and the
Earth’'s Moon. It aso indicates the valid longitude range f or each body. In order to
accommodate different traditions in measuring longitude, the Planetary Science Data Dictionary
defines a broad longitude range: (-180, 360). Table 2.1 indicates which part of that rangeis
applicable to which body.

Table2.1: Primary Bodiesand Earth’s M oon: Rotation Direction and L ongitude Range

Planet Rotation Direction L ongitude Range
Earth Prograde (O, 360)
(-180, 180)*
Mars Prograde (0, 360)
Mercury Prograde (0, 360)
Moon Prograde (0, 360)
(-180, 180)*
Jupiter Prograde (0, 360)
Neptune Prograde (O, 360)
Pluto Retrograde (0, 360)
Saturn Prograde (0, 360)
Sun Prograde (0, 360)
(-180, 180)*
Uranus Retrograde (0, 360)
Venus Retrograde (0, 360)

* The rotations of the Earth, Moon and Sun are prograde, however it has been traditional to
measure longitudes for these bodies as increasing to the east instead of the west. The PDS
recommends that the planetographic longitude standard be followed, but also supportsthe

Chapter 2. Cartographic Standards 2-3

traditional method. Specifically, the longitude range of (-180, 180) is supported for the Earth,
Moon and Sun

2.3.1 Body-Fixed Rotating Coor dinate Systems

2.3.1.1 Planetocentric

The planetocentric system has an origin at the center of mass of the body. Planetocentric latitude
is the angle between the equatoria plane and a vector connecting the point of interest and the
origin of the coordinate system. Latitudes ar e defined as positive in the northern hemisphere of
the body, where north isin the direction of Earth’s angular momentum vector, i.e., pointing
toward the hemisphere north of the solar system invariant plane. Longitudes increase toward the
east, making the planetocentric system right -handed.

2.3.1.2 Planetographic

The planetographic system has an origin at the center of mass of the body. The planetographic
latitude is the angle b etween the equatorial plane and a vector through the point of interest,
where the vector is normal to a biaxial ellipsoid reference surface. Planetographic longitude is
defined as increasing with time to an observer fixed in space above the object of inte rest. Thus,
for prograde rotators (rotating counter clockwise as seen from afixed observer located in the
hemisphere to the north of the solar system invariant plane), planetographic longitude increases
toward the west. For aretrograde rotator, planetagraphic longitude increases toward the east .

24 Rings

Locations in planetary ring systems are specified in polar coordinates by a radius distance
(measured from the center of the planet) and alongitude. Longitudes increase in the direction of
orbital motion, so the ring pole pointsin the direction of right -handed rotation. Note that this
corresponds to the | AU-defined North Pole for Jupiter, Saturn and Neptune, but the South Pole
for Uranus.

Longitudes are given relative to the ascending node of the ring plane on the Earth’s mean equator
of J2000. However, the Earth’s mean equator of B1950 is also supported as a reference longitude
because of the wealth of data already reduced using this coordinate frame. The differenceis
generaly asmall, constant offset to the longitude. All longitude values fall between 0 and 360
degrees.

Note that ring coordinates are always given in an inertial frame, asit is impossible to define a
suitable rotating coordinate frame for aring system where features rotate at different rates. When
it is necessary to specify the location of a moving body or feature, the rotation rate and epoch
must be specified in addition to the longitude.

To support the description of locations in a planetary ring system, the PDS has defined the
following elements:

2-4 Chapter 2. Cartographic Standards

RING_RADIUS
MINIMUM_RING_RADIUS
MAXIMUM_RING_RADIUS

RING_LONGITUDE
MINIMUM_RING_LONGITUDE
MAXIMUM_RING_LONGITUDE

B1950_RING_LONGITUDE
MINIMUM_B1950_RING_LONGITUDE
MAXIMUM_B1950_RING_LONGITUDE

RING_EVENT_TIME
RING_EVENT _START_TIME
RING_EVENT _STOP_TIME

RADIAL_RESOLUTION
MINIMUM_RADIAL_RESOLUTION
MAXIMUM_RADIAL_RESOLUTION

The radius and longitude elements define an inertial location in the rings, and the ring event time
elements define the time at the ring plane to which an observation refers. If desired, the radia
resolution elements can be used to specify the radial dimensions of ring features that can be
resolved in the data. See the Planetary Science Data Dictionary (PSDD) for complete definitions
of these elements.

In general, the above elements refer to locations in an equatorial ring. However, under ce rtain
circumstances it is necessary to define these values for an inclined ring, in which case the
interpretations are dightly more complicated. Here longitudes are measured as a “broken angle”
along the planet’ s equatorial plane to the ascending node of the ring plane, and thence aong the
ring plane. In these circumstances, it is also necessary to define the orbital elements of thering in
guestion via the following elements in the PSDD:

RING_INCLINATION
RING_ASCENDING_NODE_LONGITUDE
NODAL_REGRESSION_RATE
POLE_RIGHT_ASCENSION
POLE_DECLINATION
COORDINATE_SYSTEM_ID

The ascending node longitude refers to the moment defined by the RING_EVENT_TIME. The
ring inclination is given relative to the planet’s equator, as specified by the spin pole’ sright
ascension and declination. The COORDINATE_SY STEM_ID can be either “J2000” or
“B1950", with “J2000" serving as the default. See the PSDD for further details.

Chapter 2. Cartographic Standards 2-5

2.5 Reference Surface

Two standard reference surface model s are supported: the digital terrain model (DTM) and the
digital image model (DIM) . Note, however, that Mars is an exception for which planetographic
latitude is used.

The digital terrain model defines body radius as a function of cartographic latitude and longitude
in asinusoidal equal -area projection. Spheroids, €llipso ids and harmonic expansions giving
analytic expressions for radius as a function of cartographic coordinates are all supported.

The digital image model (DIM) defines body brightness in a specified spectral band or bandsas a
function of cartographic latitude and longitude in a sSinusoidal equal -area projection, and
associated with the surface radius values in the corresponding DTM. DIMs registered to
spheroids, elipsoids and harmonic expansions are supported.

2.6 Map Resolution

The suggested spatial resolution for amap is 1/2 " degrees. The suggested vertical resolution is 1
x 10™ meters, with mand n chosen to preserve al the resolution inherent in the data.

2.7 References
The following references provide more detail on the cartographic data standards:
Davies, M. E., et a (1991) “Report of the |AU/IAG/COSPAR Working Group on Cartographic

Coordinates and Rotational El ements of the Planets and Satellites; 1991,” Celestial Mechanics,
53, 377-397.

Batson, R.M., (1987) “Digital Cartography of the Planets: New Methods, its Status and Future”,
Photogrammetric Engineering & Remote Sensing, 53, 1211-1218.

Greeley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Press,
Cambridge, 296p.

2-6

body coordinates
prime meridians , 2-1
Spin axes, 2-1
map resolution, 2-5
reference coordinates, 2-1
body-fixed, 2-2, 2-3
data elements, 2-2
planetocentric, 2-2, 2-3
planetographic, 2-2, 2-3
ring systems, 2-3
ring systems, data elements, 2 -4
reference frames
B1950, 2-1
standard inertial (J2000), 2 -1
reference surface models, 2-5
digital image model (DIM), 2 -5
digital terrain model (DTM), 2 -5
rotation direction
of Solar System bodies, 2-2
time tags
format, 2-1

Chapter 2. Cartographic Standards

Chapter 3. DATA_TYPE Values and Data File Storage Formats 31

Chapter 3. DATA TYPE Vaues and Data File
Storage Formats

Each PDS archived product is described using label objects that provide information about the
datatypes of stored values. The data elements DATA_TYPE, BIT_DATA_TYPE, and
SAMPLE_TY PE appear together with related elements defining starting location and length for
each field. In PDS data object definitions the byte, bit, and record positions are counted from left
to right, or first to last encountered, and aways begin with 1.

Data files may be in ASCII or binary format. ASCII format is often more easlly transferred
between hardware systems or even application programs on the same computer.
Notwithstanding, numeric data are often stored in binary files when the ASCI| representatio n
would require substantially more storage space. (For example, each 8 -hit signed pixel valuein a
binary image file would require afour -byte field if stored as an ASCI| table.)

3.1 DataElements

Table 3.1 identifies by object the data elements providing type , location, and length information.
The elements ITEMS and ITEM_BY TES are used to subdivide asingle COLUMN,
BIT_COLUMN or HISTOGRAM into aregular vector containing as many elements as specified
for the value of ITEMS. In these objectsthe DATA_TY PE must indicate the type of asingle
itemin the vector. In the past, the data element ITEM_TY PE was used for this purpose, but
DATA_TYPE isnow the preferred parameter.

3.2 DataTypes

Table 3.2 identifies the valid values for the DATA_TYPE, BIT_DATA_TYPE, and
SAMPLE_TY PE data elements used in PDS data object definitions. The values for these
elements must be one of the standard values listed in the Planetary Science Data Dictionary
(PSDD). Please note:

?? Inal cases, these standard values refer to the physical storage format of the datain
the datafile.

?? In some cases, obsolete values from previous versions of the PDS Standards have
been retained as dliases for more specific values (the type “INTEGER”, for example,
isinterpreted as“* MSB_INTEGER” when it is encountered). In these cases the m ore
specific value should always be used in new data sets — the obsolete value is retained
only for backward compatibility. Obsolete values are indicated in the table.

?? Aliases have been supplied for some of the generic data types that indicate the kind of
system on which the data originated. For example, “ MAC_REAL” isan dias for
“IEEE_REAL”, but “VAX_REAL” hasno dlias, asthe VAX binary storage format is
unique to VAX systems. In genera, the more generic term is preferred, but the
system-specific version may be used if needed.

Chapter 3. DATA_TY PE Definitions and Data File Storage Formats

Table 3.1: Type Elements Used in Data L abel Objects

Data Object

COLUMN
(without ITEMS)

COLUMN
(with ITEMS)

BIT_COLUMN
(without ITEMS)

BIT_COLUMN
(with ITEMS)

IMAGE

HISTOGRAM

Data Elements

DATA_TYPE
START_BYTE
BYTES

DATA_TYPE
START_BYTE

BYTES (optional)

ITEMS
ITEM_BYTES

BIT_DATA_TYPE

START BIT
BITS

START BIT
BITS (optional)
ITEMS
ITEM_BITS

SAMPLE_TYPE
SAMPLE_BITS

DATA_TYPE
BYTES (optional)
ITEMS
ITEM_BYTES

Notes

diasfor ITEM_TYPE

total bytesin COLUMN

bytesin each ITEM

total bitsin BIT_COLUMN

bitsin each ITEM

diasfor ITEM_TYPE

total bytesin HISTOGRAM
number of binsin HISTOGRAM
bytesin each ITEM

Chapter 3. DATA_TYPE Values and Data File Storage Formats 33

Table 3.2: Standard PDS Data Types

Data Element Usage Codes:

D = DATA_TYPE
B = BIT_DATA_TYPE
S = SAMPLE TYPE
Usage Value Description
D ASCII_REAL ASCII character string representing a real number; see
Section 5.4 for formatting rules
D ASCII_INTEGER ASCII character string representing an integer; see
Section 5.4 for formatting rules
D ASCII_COMPLEX ASCII character string representing a complex number;
see Section 5.4 for formatting rules
Obsolete BIT_STRING diasfor MSB_BIT_STRING
D,B BOOLEAN True/False Indicator: a 1-, 2- or 4-byte integer or 1-32 bit
number. All 0 = Falsg; anything else = True.
D CHARACTER ASCII character string; see Section 5.4 for formatting
rules
Obsolete COMPLEX diasfor IEEE_COMPLEX
D DATE ASCII character string representing adat e in PDS
standard format; see Section 5.4 for formatting rules
D EBCDIC_CHARACTER EBCDIC character string
Obsolete FLOAT diasfor IEEE_REAL
D IBM_COMPLEX IBM 360/370 mainframe complex number (8 - or 16-
byte)
D,S IBM_INTEGER IBM 360/370 mainframe 1 -, 2-, and 4-byte signed
integers
D, S IBM_REAL IBM 360/370 mainframe real number (4 - or 8-byte)
D,B,S IBM_UNSIGNED_INTEGER IBM 360/370 mainframe 1 -, 2-, and 4-byte unsigned
integers
D IEEE_COMPLEX 8-, 16-, and 20-byte complex numbers
D,S IEEE_REAL 4-, 8- and 10-byte real numbers
Obsolete INTEGER diasfor MSB_INTEGER
D LSB_BIT_STRING 1-, 2-, and 4-byte bit strings
D, S LSB_INTEGER 1-, 2-, and 4-byte signed integers
D,B, S LSB_UNSIGNED_INTEGER 1-, 2-, and 4-byte unsigned integers
D MAC_COMPLEX diasfor IEEE_COMPLEX
D,S MAC_INTEGER diasfor MSB_INTEGER
D,S MAC_REAL diasfor IEEE_REAL
D,B,S MAC_UNSIGNED_INTEGER dliasfor MSB_UNSIGNED_INTEGER
D MSB_BIT_STRING 1-, 2-, and 4-byte bit strings
D, S MSB_INTEGER 1-, 2-, and 4-byte signed integers
D,B,S MSB_UNSIGNED_INTEGER 1-, 2-, and 4-byte unsigned integers
D,B N/A Used only for spare (or unused) fields included in the

datafile.

34 Chapter 3. DATA_TY PE Definitions and Data File Storage Formats
D PC_COMPLEX 8-, 16-, and 20-byte complex numbers in IBM/PC formeat
D,S PC_INTEGER diasfor LSB_INTEGER
D,S PC_REAL 4-, 8-, and 10-byte real numbersin IBM/PC format
D,B,S PC_UNSIGNED_INTEGER diasfor LSB_UNSIGNED_INTEGER
Obsolete REAL diasfor IEEE_REAL
D SUN_COMPLEX diasfor IEEE_COMPLEX
D,S SUN_INTEGER diasfor MSB_INTEGER
D,S SUN_REAL alias for IEEE_REAL
D,B,S SUN_UNSIGNED_INTEGER aliasfor MSB_UNSIGNED_INTEGER
D TIME ASCII character string representing a date/time in PDS
standard format; see Section 5.4 for formatting rules

Obsolete UNSIGNED_INTEGER aliasfor MSB_UNSIGNED_INTEGER

D VAX_BIT_STRING alias for LSB_BIT_STRING

D VAX_COMPLEX Vax F-, D-, and H-type (8-, 16- and 32-byte,
respectively) complex numbers

D,S VAX_DOUBLE diasfor VAX_REAL

D,S VAX_INTEGER diasfor LSB_INTEGER

D, S VAX_REAL Vax F-, D-, and H-type (4-, 8- and 16-byte, respectively)
rea numbers

D,B,S VAX_UNSIGNED_INTEGER diasfor LSB_UNSIGNED_INTEGER

D VAXG_COMPLEX Vax G-type (16-byte) complex numbers

D, S VAXG_REAL Vax G-type (8-byte) real numbers

3.3 Binary Integers

There are two widely used formats for integer representations in 16-bit and 32-bit binary fields:
most significant byte first (MSB) and least significant byte first (LSB) architectures. The MSB
architectures include IBM mainframes, many UNIX systemssuch as S UN, and Macintosh
computers. The LSB architectures include VAX systems and IBM PCs. In the original PDS
system the default format was M SB, thus the designation of “INTEGER” and

“UNSIGNED_ INTEGER” asdliasesof “MSB _INTEGER” and “MSB_UNSIGNED _IN-
TEGER”. New data sets should be prepared using the appropriate specific designation from

Table 3.2, above.

3.4 Signed vs. Unsigned I ntegers

The* INTEGER” datatypes refer to signed, 2's complement integers. Use the corresponding
“ UNSIGNED_INTEGER” type for unsigned integer and hit string fields.

Chapter 3. DATA_TYPE Values and Data File Storage Formats 35

3.5 Floating Point Formats

The PDS default representation for floating point numbersisthe ANSI/IEEE standard. Thi s
representation is defined as the IEEE_REAL data type, with aliases identified in Table 3.2.
Several additional specific floating -point representations supported by PDS are described in
Appendix C.

3.6 Bit String Data

The BIT_STRING data types are used in definitions of table columns holding individua bit field
values. A BIT_COLUMN object defines each bit field. BIT_STRING datatypes can be 1-, 2-, or
4-byte fields, much like a binary integer. Extraction of specific bit fieldswithina2 - or 4-byte
BIT_STRING is dependent on the host architecture (MSB or LSB). Ininterpreting bit fields
(BIT_COLUMNS) withinaBIT_STRING, any necessary conversions such as byte swapping
from LSB to MSB are done first, then bit field values (START _BIT, BITS) are used to extract
the appropriate bits. This procedure ensures that bit fields are not fragmented due to differences

in hardware architectures.

3.7 Character Data
Specification of character field format in ASCII and binary files pending.

3.8 Format Specifications
Data format specifications provided in the FORMAT element serve two purposes:

1. Inan ASCII datafile, they provide aformat which can be used in scanning the ASCI |
record for individual fields; and

2. Inabinary datafile, they provide aformat that can be used to display the binary values .

A subset of the FORTRAN data format specifiersis used for the values of FORMAT elements.
Valid specifiers include:

Aw Character datavalue
lw Integer value
Fw.d Floating point value, displayed in decimal format

Ew.d[E€] Floating point value, displayed in exponential format
Where:

w isthe total number of positionsin the output field (including sign, decimal point, and
exponentiation character — usually “E” —if any);

d isthe number of positionsto the right of the decimal point;

e isthenumber of positionsin exponent length field.

3-6 Chapter 3. DATA_TY PE Definitions and Data File Storage Formats

3.9 Internal Representations of Data Types
Appendix C contains the detailed internal representations of the PDS standard data types listed in
Table 3.2.

The PDS has developed tools designed to use the specifications contained in Appendix C for
interpreting data values for display and validation.

Chapter 3. DATA_TYPE Values and Data File Storage Formats

aliases
for datatypes, 3-1
binary data
bit string format, 3-5
integer formats, 3-4
bit field representation, 3-5
BIT_COLUMNS 3-5
BIT DATA _TYPE
standard values, 3-1
BIT_STRING, 3-5
datatype
data elements, 3-1
datatypes
table of data element, 3-2
table of standard values, 3-3
DATA _TYPE
standard values, 3-1
floating point, 3-5
floating point representation, 3-5
format specifications, 3-5
for ASCII datafiles, 3-5
for binary datafiles, 3-5
integer representations
least significant byte first (LSB), 3-4
most significant byte first (MSB), 3-4
signed vs. unsigned, 3-4
ITEM_TY PE (obsolete), 3-1
ITEMS, 3-1
LSB integers. See integer representations
MSB integers. See integer representations
Planetary Science Data Dictionary (PSDD), 3-1
SAMPLE _TYPE
standard values, 3-1
storage formats
binary integers, 3-4

3-7

Chapter 4. Data Products 4-1

Chapter 4. Data Objects and Products

At itssimplest, a data product consists of a PDS label and the data object that it describes. More
complex data products may contain several mutually dependent data objects, a primary object
and one or more secondary objects, or both. In all cases, asingle label is used to describe all
parts of the product (even if they are held in separate physical files). A single PRODUCT _ID
value is defined for the entire set in that PDS labedl.

A data product is one component of adata set (see the Data Set/Data Set Collection Contents
and Naming chapter of this document).

Primary Data Object
A primary data object is a set of results from a scientific observation. Primary data objects are
usually described using one of these PDS object structures:

TABLE
IMAGE
SERIES
SPECTRUM

Secondary Data Object

A secondary data object is any data used for processing or interpreting the primary data object(s),
for example, a histogram derived from an image. Secondary data objects are usually described
using one of these PDS object structures:

HISTOGRAM
PALETTE
HEADER

The PDS data product label, written in Object Description Language (ODL) (see the Object
Description Language (ODL) Specification and Usage chapter of this document), defines both
the physical and logical structure of the constituent data object(s).

4-2 Chapter 4. Data Products

4.1 DataProduct File Configurations

The PDS label and data object may be in the same file or separate files. For data products with
more than one object, the data objects may be in one or morefiles. In all cases, however, there
must be exactly one PDS label containing exactly one PRODUCT _ID vaue. The PRODUCT _ID
value must be unigue within the data set containing this data product.

Example

Consider a data product that consists of a 3-color image in which each color plane is stored in a separate physica
file (that is, one file each for red, blue and green). Since al three colors are required to get the full image, this
product contains three mutually dependent primary objects.

The label for this data product will contain a single PRODUCT _ID, three pointers to the separate data files, and
three IMAGE object definitions. To aid in distinguishing between data files, the data preparer may also choose to
include an IMAGE_ID keyword in each IMAGE object definition. The resulting PDS label would contain the
following lines:

PRODUCT | D = "22A190"
ARED | MAGE = "22A190R | M3
AGREEN | MAGE = "22A190G | MG
ABLUE | MAGE = "22A190B. | MG
OBJECT = RED | MAGE

| MAGE | D = "22A190- RED'
END_OBJECT = RED | MAGE
OBJECT = GREEN | MAGE

| MAGE | D = "22A190- GREEN"
END_OBJECT = GREEN | MAGE
OBJECT = BLUE | MAGE

| MAGE | D = "22A190- BLUE"
END_OBJECT = BLUE | MAGE

Figure 4.1 illustrates file configurations for a data product with asingle dataob ject.

Chapter 4. Data Products

@ Attached Label
file A

PRODUCT ID=A FDS Label
Primary Data Object

@ Detached Label
file A
FRODUCT ID=A PDS Label

file B

Primary Data Object

Figure 4.1 Data Product with a Single Data Object

Figure 4.2 shows the possible file configurations for a single data product consisting of one
primary and one secondary data object. Similar examples could be made using data products
composed of more than two data objects.

Attached Label
PRODUCT_ID = A

Chapter 4. Data Products

file A

PDS Label

Attached Label
PRODUCT ID=A

Primary Data Object
Secondary Data Object

file A

PDS Label

FRODUCT_ID =B

Primary Data Object

file B

PDS Label

Detached Label

Secondary Data Objact

file A

)

FPDS Label

PRODUCT_ID=A

file B

Primary Data Object
Secondary Data Object

)

Detached Label
PRODUCT_ID = A

file A

FDS Label

PRODUCT_ID=B

file B

Primary Data Object

file C

PDS Label

Combined Detached Label
PRODUCT ID= A

file D

Secondary Data Object

)
)

file A

PDS Label

file B

Primary Data Object

file C

Secondary Data Object

Figure 4-2. Data Product with Multiple Data Objects

Chapter 4. Data Products

data product
and PRODUCT _ID, 4-1
definition, 4-1
file configurations, 4-2
label example, 4-2
primary data object, 4-1
seconday data object, 4-1
PRODUCT _ID, 4-1

4-1

Chapter 5. Data Product Labels 51

Chapter 5. Data Product Labels

PDS data product labels are required for describing the contents and format of each individual
data product within adata set. PDS data product labels are written in the Object Description
Language (ODL). The PDS has chosen to label the wide variety of data products under archival
preparation by implementing a standard set of data object definitions, data elements, and
standard values for the elements. These data object definitions, data elements, and standard
values are defined in the Planetary Science Data Dictionary (PSDD). Appendix A of this
document provides genera descriptions and examples of the use of these data object definitions
and data elements for labeling data products.

5.1 Format of PDS Labels

5.1.1 Labeling methods

In order to identify and describe the organization, content, and format o f each data product, PDS
requires a distinct data product label for each individual data product file. These distinct product
labels may be constructed in one of three ways:

Attached - The PDS data product label is attached at the beginning of the data product file. There
is one label attached to each data product file.

Detached - The PDS data product label is detached from the data and resides in a separate file
which contains a pointer to the data product file. There is one detached label file for every data
product file. The label file should have the same base name as its associated data file, but the
extension .LBL .

Combined Detached - A single PDS detached data product label file is used to describe the
contents of more than one data product file. The combined detached label contains pointersto
individual data products.

NOTE: Although al three labeling methods are equally acceptable, the PDS tools do not
currently support the Combined Detached label option.

Figure 5.1 illustrates the use of each of these methods for labeling individual data product files.

5-2

Chapter 5. Data Product Labels

File A
PDS
LABEL
Attached Label
DATA
File A
PDS Detached Label
LABEL
\ File B
DATA
File A
PDS LABEL File B
Combined
DATA Detached Label
File C
l
DATA

Figure5.1 Attached, Detached, and Combined Detached PDS Labels

Chapter 5. Data Product Labels 5-3

5.1.2 Label format

PDS recommends that labels have stream record format, and line lengths of at most 80 characters
(including the CR/LF line terminators) so that the entire label can be seen on a computer screen
without horizonta scrolling. The carriage return and line feed (CR/LF) pair is the required line
terminator for al PDS labels. (See the Record Formats chapter of this document.)

All valuesin a PDS label should be in upper case, except values for descriptive elements
(DESCRIPTION, NOTE, etc.). It is aso recommended that the equa signsin the labels be
aligned for ease of reading.

ASCI I Character Set

All valuesin aPDS label must conform to the standard 7 -bit ASCII character set. Labels may
include characters in the range of ASCII ch aracters 32 through 127 (decimal), and the record
delimiters Line Feed (10 decimal) and Carriage Return (13 decimal).

The remaining 7 -bit ASCII characters (1-9, 11, 12, and 14-31 decimal, which includes the
horizontal and vertical tab and form feed charac ters) are not permitted in PDS labels. Note that
the 8-hit characters 128 through 255 (decimal) are not used in the PDS as the interpretation of
these characters varies by operating system, computer platform, and font selected. Specifically,
extended-set characters with diacritical marks are not to be used as they are interpreted
differently by different applications.

Label Padding
When a fixed length data file has an attached label, the label is padded with space characters
(ASCII 32 decimal) in one of the following ways:

1) Spaces are added after the label’s END <CR><LF> statement and before the data so that the
total of the label (in bytes) is an integral multiple of the record length of the data. In this case,
LABEL_RECORDS is calculated by dividing the total padded length of the label section, in
bytes, by the stated value of RECORD_BYTES.

Example

In the example below, the label portion of thefile is 7 x 324 = 2268 bytes in length, including blank fill between the
END<CR><LF> statement and the first byte of data. The actual data portion of thefile starts at record 8 (i.e., the 1st
byte of the 8th record starts at byte (7 x 324)+1 = 2269)

RECORD_TYPE = FI XED_LENGTH<CR><LF>
RECORD_BYTES = 324<CR><LF>

FI LE_RECORDS = 334<CR><LF>
LABEL_RECORDS = 7<CR><LF>

N MAGE = 8<CR><LF>
END<CR><LF>

....blank fill....

dat a

5-4 Chapter 5. Data Product Labels

2) Each line in the label may be padded with space characters so that each line in the label has
the same record length as the data file. In this case, the label line length may exceed the
recommended 80 characters, LABEL_RECORDS is the number of physical records in the label
section of thefile.

Example

In the example below, the label portion of the fileis 80 x 8 5 = 6800 bytes in length. Each line in the label portion of
the file is 85 bytes long, the same length as each data record. Notice the blank space between the actual valuesin the
label and the line delimiters. In the example, the label is80 lineslong (i .e., 80 recordslong) and the data begin at
record 81. Note that the label is padded so that <CR><LF> are in bytes 84 and 85.

RECORD TYPE = FI XED LENGTH <CR><LF>
RECORD BYTES = 85 <CR><LF>
FI LE_RECORDS = 300 <CR><LF>
LABEL RECORDS = 80 <CR><LF>
ATABLE =81 <CR><LF>
END <CR><LF>
Dat a

5.2 DataProduct Label Content

5.2.1 Attached and Detached L abels

PDS data product labels have a generd structure that is used for all attached and d etached labels,
except for data products described by minimal labels. (Minimal labels are described in Section
5.2.3)

LABEL STANDARDS identifier

FILE CHARACTERISTIC data elements
DATA OBJECT pointers
IDENTIFICATION data elements
DESCRIPTIVE data elements

DATA OBJECT DEFINITIONS

END statement

3IIIII

Figure 5.2 provides an example of how this general structure appears in an attached or detached
label for a data product file containing multiple data objects.

Chapter 5. Data Product Labels

PDS LABEL

PDS_VERSION _ID

/*FILE_CHARACTERISTICS */
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

"POINTERS TO DATA OBJECTS */
MMAGE

MHISTOGRAM

MIDENTIFICATION DATA ELEMENTS i
DATA_SET_ID

PROD UGT_ID
SPACECRAFT_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME
STOP_TIME

wm uwonmwnmn

PRODUCT_CREATION_TIME =

{"DESCRIPTIVE DATA ELEMENTS */
FILTER_MNAME =
OFFSET_MODE_ID =

[*DATA OBJECT DEFINITIONS */

OBJECT = |[MAGE
END_OBJECT - IMAGE
OBJECT — HISTOGRAM
END_OBJECT — HISTOGRAM
EMND

5-5

= LABEL STANDARDS
IDENTIFIERS

* FILE CHARACTERISTICS
DATA ELEMENTS

» DATA OBJECT POINTERS
(primary, secondary)

= IDENTIFICATION DATA
ELEMENTS

* DESCRIPTIVE DATA
ELEMENTS

= DATA OBJECT
DEFINITIONS
(primary, secondary)

 END STATEMENT

Figure5.2 PDS Attached / Detached Label Structure

5-6 Chapter 5. Data Product Labels

5.2.2 Combined Detached L abels

For the Combined Detached label option, the general label structure is modified dightly to
reference each individua file within its own FILE object explicitly. In addition, identification
and descriptive data elements that apply to all of the files can be located before the FILE objects.

?? LABEL STANDARDS identifiers
?? IDENTIFICATION data elementsthat apply to all referenced data files
?? DESCRIPTIVE data elements that apply to all referenced datafiles
?? OBJECT=FILE statement (Repeats for each data product file)
z%s FILE CHARACTERISTIC data elements
2 DATA OBJECT pointers
z%s IDENTIFICATION data elements
z#< DESCRIPTIVE data elements
z%s DATA OBJECT DEFINITION
?? END_OBJECT=FILE statement
?? END statement

Figure 5.3 provides an example of how this general structure appears in a combined detached
label that describes more than one data product file.

Chapter 5. Data Product Labels

PDS LABEL

PDS_VERSION_ID

DATA_SET_ID

PRODUCT_ID
SPACECRAFT_ID
INSTRUMENT_NAME
TARGET_NAME
PRODUCT_CREATION_TIME

OBJECT - FILE
RECORD TYPE _
FILE_ RECORD "
ATIME_SERIES = "FILEA"
START TIME -
STOP_TIME -
OBJECT = TIME_SERIES
END_OBJECT - TIME_SERIES
END_OBJECT = FILE
OBJECT = EILE
RECORD_TYPE =
FILE_ RECORD =
ATIME_SERIES = “FILEB"
START TIME -
STOP_TIME "
OBJECT = TIME_SERIES
END_OBJECT = TIME_SERIES
END _OBJECT = FILE

END

5-7

LABEL STANDARDS
* IDENTIFIERS

= |DENTIFICATICN &
DESCRIFTIVE DATA ELEMENTS
for all files

* For Detached FILE A:
FILE CHARACTERISTICS
DATA ELEMENTS

= DATA OBJECT POINTERS

= |IDENTIFICATION/DESCPRITIVE
DATA ELEMENTS

» DATA OBJECT DEFINITIONS

For Detached FILE B:
= FILE CHARACTERISTICS
DATA ELEMENTS

* DATA OBJECT POINTERS

* |[DENTIFICATION/DESCRIPTIVE
DATA ELEMENTS

* DATA OBJECT DEFINITIONS

= END STATEMENT

Figure 5.3 PDS Combined / Detached PDS Label Structure

5-8 Chapter 5. Data Product Labels

5.2.3 Minimal Labels

Use of the minimal labe | option is only allowed when the format of the data cannot be supported
by any PDS data object structure other than the FILE object.

For minimal labels the required use of data objectsiswaived. A minimal label does not require
any explicit PDS data object definitions or pointers to data objects. This appliesto both attached
and detached | abels.

Minimal labels must satisfy the following requirements:
(1) Provide the ability to locate the data associated with the label.
la Attached labels

Since data objects and pointers are not required in the minimal label, by definition
the data follow immediately after the label.

1b. Detached Labels

Both the implicit and explicit use of the FILE object are supported. The
FILE_NAME keyword is required in the explicit FILE object, or in the label itself
if no FILE object is included.

(2) Provide the ahility to locate a description of the format/content of the data. One of the
following must be provided in the minimal label:

2a. ADESCRIPTION = “<filename>"
Thisis a pointer to afile containing a detailed description of the data format,
which may be located in the same directory as the data or in the DOCUMENT
subdirectory.

2b. DESCRIPTION = “<text appears here>"
Thisis either a detailed description of the data file, its format, data types, and use,
or it isareference to a document available externaly, e.g., a Software Interface
Specification (SIS) or similar document.

(3) When minimal labels are used, DATA_OBJECT_TYPE = FILE should be used in the
DATA_SET catalog file

Chapter 5. Data Product Labels

5231 Implicit File Object (Attached and Detached Minimal Label)
The general structure for minimal labels with implicit file objects is as follows:

?? LABEL STANDARDS identifier

FILE CHARACTERISTIC data elements
IDENTIFICATION data elements
DESCRIPTIVE data elements

7
7
7
?? END statement

5.2.3.2 Explicit File Object (Detached Minimal L abel)
The general structure for minimal labels with explicit file objectsis as follows:

?? LABEL STANDARDS identifier
?7? IDENTIFICATION data elements
?? DESCRIPTIVE data elements
?7? OBJECT=FILE statement
&% FILE CHARACTERISTIC data elements

?? END_OBJECT=FILE
?? END statements

Figure 5.4 provides an example of how this genera structure appears in a detached minimal
label. In thisexample, an implicit FILE object is used.

5-9

5-10

5.3 Detailed Label Contents Description

e N 1 IR LA -

MIDENTIFICATION DATA ELEMENTS */
DATA_SET_ID
PRODUCT_ID
SPACECRAFT_NAME
INSTRUMENT _NAME
TARGET_NAME
START_TIME
STOP_TIME

mn uwmwwmwn

PRODUCT_CREATION_TIME =

M"DESCRIPTIVE DATA ELEMENTS */
FILTER_MAME =
OFFSET_MODE_ID
ADESCRIPTION

END

Chapter 5. Data Product Labels

= IDENTIFICATION DATA
ELEMENTS

* DESCRIPTIVE DATA
ELEMENTS

s END STATEMENT

Figure 5.4 PDS Detached Minimal Label Structure

This section describes the detailed requirements for the content of PDS labels. The subsections
describe label standards identifiers, file characteristic data elements, data object pointers,
identification data elements, descriptive data elements, data object definitions, and the END

statement.

5.3.1 Label Standards |dentifiers

Each PDS label must begin with the PDS_VERSION_ID data element. This element identifies
the published version of the Standards to which the label adheres, for purposes of both validation
as well as software development and support. For labels adhering to the standards described in
this document (the PDS Standards Reference, Version 3.4), the appropriate value is“PDS3":

Chapter 5. Data Product Labels 511

PDS_VERSI ON | D = PDS3

The PDS does not require Standard Formatted Data Unit (SFDU) labels on individual products,
but they may be desired for conformance with specific project or other agency requirements.
When SFDU labels are provided on a PDS data product, the SFDU label must precede the
PDS VERSION_ID keyword, thus:

CCsD. . .. [optional SFDU | abel]
PDS_VERSI ON_| D
LABEL_REVI S| ON_NOTE

SFDU labels in PDS products must follow the format standards described in SFDU Usage
chapter in this document.

The LABEL_REVISION_NOTE element is afree form, unlimited -length character string
providing information regarding the revision status and authorship of aPDS labdl. It should
include at least the latest revision date and the author of the current version, but may include a
complete editing history. This element is required in all catalog labels.

Example

PDS_VERSI ON_| D
LABEL_REVI S| ON_NOTE
rel ease; "
RECORD_TYPE
RECORD BYTES = 80

PDS3
"1999-08-01, Anne Raugh (SBN), initial

FI XED_LENGTH

5.3.2 FileCharacteristic Data Elements

PDS data product labels contain data element information that describes important attributes of
the physical structure of a data product file. The PDS file characteristic data elements are:

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

The RECORD_TY PE data element identifies the record characteristics of the data product file. A
complete discussion of the RECORD_TY PE data element and its use in describing data products
produced on various platforms is provided in the Record Formats chapter in this document. The
RECORD_BY TESdata element identifies the number of bytes in each physical record in the
data product file. The FILE_RECORDS data element identifies the number of physical records
inthefile. The LABEL_RECORDS data element identifies the number of physical records that
make up the PDS product label.

Not al of these data elements are required in every data product | abel. Table 5.1 liststhe
required (Req) and optional (Opt) file characteristic data elements for a variety of data products
and labeling methods for both attached (Att) and detached (Det) labels. Where (max) is
specified, the value indicates the maximum size of any physical record in the file.

5-12 Chapter 5. Data Product Labels

Chapter 5. Data Product Labels 5-13

Table5.1: File Characteristic Data Element Requirements

Labeling Method |Att Det |Att Det |Att Det |Att Det
RECORD_TYPE FIXED LENGTH |VARIABLE LENGTH | STREAM UNDEFINED
RECORD BYTES |Req Req |Rmax Rmax lOmax - -)
FILE_RECORDS Req Req |Req Req |Opt Opt |-)
LABEL_RECORDS |Req ; Req - Opt ; -)

Note: The FILE_NAME keyword is required in detached minimal labels.

5.3.3 Data Object Pointers

“Data objects’ are the actual data for which the structure and attributes are defined in a PDS
label. Each data product file contains one or more data objects. The PDS uses a pointer within
the product labels to identify the file locations for al objects in a data product.

Example

ATABLE
ATABLE

" DATA. DAT"
("DATA DAT", 10 <BYTES>)

5.33.1 Use of Pointersin Attached L abels

Data object pointers are required in labels with one exception: attached labelstha t refer to only a
single object. In the absence of a pointer, the data object is assumed to start in the next physical
record after the PDS product label area. Thisis commonly the case with ASCI| text files
described by a TEXT object and ASCII SPICE files described by a SPICE_KERNEL object. The
top two illustrations in Figure 5.5 show example files that do not require data object pointers.

Object pointers are required for al data objects, even when multiple data objects are stored ina
single data product file. Data object pointers in attached labels take one of two forms:

A<object_identifier> = nnn

where nnn represents the starting record number within the file (first record is numbered 1),
Or,

A<object_identifier> = nnn <BYTES>
where nnn represents the starting byte location within the file (first byte is numbered 1).

See Chapter 12, Object Description Language (ODL) Specification and Usage, and Chapter 14,
Pointer Usage, in thisdocument for a complete description of pointer syntax.

5-14 Chapter 5. Data Product Labels

The bottom two illustrations in Figure 5.5 show the use of required data object pointers for
attached label products containing multiple data objects.

END LABEL
END v
r 9
SPICE
TEXT
KERMEL DATA
v
Record Byte
! [ATABLE 1 = 11 1 MMAGE = 161 <BYTES> 4
ATABLE 2 = 31 AHISTOGRAM = 640161 <BYTES> LABEL
END END %
11 161
TABLE 1 ASE
31 DATA
TABLE 2 640161
HISTOGRAM
Y

Figure 5.5 Data Object Pointers-Attached Labels

5.3.3.2 Use of Pointersin Detached and Combined Detached L abels
When the PDS data product label is a detached or a combined detached label, data object
pointers are required for all data objects referenced.

The syntax for these data object pointers takes one of three forms:

(1) ~object_identifier =*"filename”
(2) "object_identifier = (“filename”, nnn)
(3) Mobject_identifier = (“filename”, nnn <BYTES>)

Chapter 5. Data Product Labels 5-15

With respect to the above three cases:

(@) These object pointers reference either byte or record locations in data files that are
detached, or separate from, the label file.

(b) “Filename” isthe name of the detached datafile. Fil e names must be in uppercase
characters.

(c) When no offset is specified, the first record is assumed.

(d) Records and bytes are numbered from 1.

In the first case, the data object is located at the beginning of the referenced file. In the second
case, the data object begins with the nnn™ physical record from the beginning of the referenced
file. Inthethird case, the data object begins with the nnn ™ byte from the beginning of the
referenced file.

Examples
N MAGE = ("DATA | MG')
~“ENG NEERI NG_TABLE = (" DATA. DAT", 10)
NTABLE = ("DATA TAB', 10 <BYTES>)

Figure 5.6 contains several examples of data object pointer usage for data product files with
detached or combined detached labels. The top example sh ows a data product consisting of a
HEADER data object and a TABLE data object together in asingle file. The detached label for
this product includes pointers for both data objects, with the TABLE object starting at byte 601
of file A. The middle example illustrates a combined detached label for a data product contained
in two data objects, each in a separate file. A separate pointer is provided for each data object.
The bottom example shows a detached label for a data product containing multiple data obj ects.

The third example shows a complex data file structure. The HEADER object comes first in the
datafile and, as the pointer (“*HEADER”) shows, it requires no explicit offset (record 1 is
assumed). Two parallel objects, a TABLE and an IMAGE, then follo w the header. For this
section of the file, each record contains one row of the TABLE followed by one line of the
IMAGE. Inthe TABLE object description, the bytes of the IMAGE are accounted for as
ROW_SUFFIX_BYTES,; in the IMAGE object description, the bytes of the TABLE object are
accounted for as LINE_PREFIX_BYTES. Both objects start in the same record, and therefore
have the same offset (4). See the IMAGE and TABLE object descriptions for more information
on prefix and suffix bytes. Had this data file be en organized sequentially (so that, for example,
the HEADER was followed by the TABLE, which in turn was followed by the IMAGE), then
each object would have had its own offset.

5333 Note Concerning Minimal Attached and Detached L abels

Data object pointers do not exist in minimal labels . In these cases the format of the datais
usualy fully described in a separate file or document.

5-16 Chapter 5. Data Product Labels

<— DATA—p
€«—— LABEL > Byte FILEA
1
5 g et | UEADER
e HEADER = "FILEA
- ATABLE = "FILEA", 601 <BYTES>)4
3601
TABLE
FILEA
_ ATABLE = "EILEA" >
EXAMPLE 2:
A SERIES = "FILEB" N TABLE
FILEB
SERIES
Record
A HEADER = "FILEA"— 1 HEADER
EXAMPLE 3: A IMAGE = (*FILEA®, 4)—
L
ATABLE = (FILEA", 4)———% 4 | = | mAGE
=L
'—

Figure 5.6 Data Object Pointers— Detached & Combined Labels

5.3.4 Dataldentification Elements

The data identification elements provide additional information about a data product that can be
used to relate the product to other data products from the same data set or data set colection. The
minimum set of identification elements required by the PDS standards (see the following
subsections) is sufficient to populate a high -level database like, for example, the PDS central
catalog. In addition, data preparers will choose additional identification elements from the
Planetary Science Data Dictionary (PSDD) to support present and future cataloging and search
operations.

NOTE: When adata preparer desires anew element for a data product label - one not yet
recorded in the PSDD - it can be proposed for addition to the dictionary. Contact a PDS Data
Engineer for assistance.

Chapter 5. Data Product Labels 5-17

534.1 Spacecr aft Science Data Products

The following data identification elements must be included in product labels for all spacecraft
science data products:

DATA SET ID
PRODUCT ID

INSTRUMENT_HOST _NAME
INSTRUMENT _NAME

TARGET _NAME

START_TIME

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
PRODUCT_CREATION_TIME

5.34.2 Earthbased Science Data Products

The following data identification elements must be included in product labels for all E arth-based
science data products:

DATA_SET ID
PRODUCT ID

INSTRUMENT _HOST_NAME
INSTRUMENT_NAME
TARGET_NAME

START TIME

STOP_TIME
PRODUCT_CREATION_TIME

5.34.3 Ancillary Data Products

The following data identification elements must be included in product labels for al ancillary
data products. Ancillary products may be more genera in nature, supporting a wide variety of
instruments for a particular mission. For example, SPICE data sets, genera | engineering data
sets, and uplink data are considered ancillary data products.

DATA_SET ID
PRODUCT ID
PRODUCT_CREATION_TIME

The following identification elements are highly recommended, and should be included in
ancillary data products whenever they apply:

INSTRUMENT_HOST NAME
INSTRUMENT _NAME

TARGET NAME

START_TIME

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

5-18 Chapter 5. Data Product Labels

5.3.5 Descriptive Data Elements

In addition to the data identification elements required for various types of data, PDS stron gly
recommends including additional data elements related to specific types of data. These
descriptive elements should include any elements needed to interpret or process the data objects
or which would be needed to catalog the data product to support potential search criteriaat the
product level.

Recommendations for descriptive data elements to be included come from the PDS mission
interface personnel as well as the data producer’s own suggestions. These additiona data
elements are selected from the Planetary Science Data Dictionary.

NOTE: When adata element is needed for a data product label, but is not yet recorded in the
PSDD, it may be proposed for addition to the dictionary. Contact a PDS data engineer for
assistance in submitting new data elements for inclusion in the PSDD.

Pointers are sometimes used in a PDS label to provide a shorthand method for referencing either
a set of descriptive data elements (e.g., "DESCRIPTION) or along descriptive text passage
relevant to severa data product labels.

5.3.6 Data Object Definitions

The PDS requires a separate data object definition within the product label for each object in the
product, to describe the structure and associated attributes of each constituent object. Each object
definition, whether for a primary or a secondary object, must have a corresponding object pointer
as described in Section 5.3.3.

Object definitions are of the form:
OBJECT = aaa where aaais the name of th e data object

END_OBJECT =aaa

The PDS has designed a set of standard data object definitions to be used for labeling products.
Among these standard objects are those designed to describe structures commonly used for
scientific data storage. Appendix A provides the complete set of PDS object definition
requirements, along with examples of product labels.

Pointers are sometimes used in a PDS label to provide a shorthand method for including a
standard set of sub-objects referenced in several data product labels. For example, a pointer
caled “*STRUCTURE” is often used to include a set of COLUMN sub-objects for aTABLE
structure used in many labels of the same data set.

Chapter 5. Data Product Labels 5-19

5.3.7 End Statement

The END statement ends a PDS label. Where required by an outside agency, the END statement
may be followed by one or more SFDU labels.

The PDS does not require SFDU labels on individual products, but they may be required to
conform with specific project or other agency requirements. If SFDUs are provided on a data
product, they must follow the standards described in the SFDU Usage chapter in this document.
In some, but not all cases, another SFDU label is required after the PDS END statement to
provide “end label” and sometimes “start data’ information.

54 Syntax for Element Values

The values of keywords must be expressed in a manner appropriate to the type of the keyword.
Datatypes for element values are specified in the element definitions contained inth e PSDD.
The syntax rules for expressing these values in PDS labels are discussed in detail in Section 12.3
of Chapter 12: Object Description Language Specification and Usage. A brief summary is
provided here for reference.

Character Strings

Character strings are enclosed in double quotes unless they consist entirely of uppercase letter,
number, and/or underscore () characters.

Examples
NAVE = FILTER Correct
NAVE = "FI LTER WAVELENGTH" Correct
NAVE = FI LTER_WAVELENGTH Correct
NAVE = FI LTER WAVELENGTH Incorrect
Integers

Integer values must be presented as a string of digits, optionally preceded by a sign. Specificaly,
no comma or point should be used to group digits. Valuesthat are to be interpreted as integers
must not be enclosed in quotation marks of any kind.

Examples
| TEMS =12 Correct
REQUI RED STCORAGE BYTES = 43364 Correct
| TEMS = "12" Incorrect
REQUI RED STORAGE BYTES = 43, 364 Incorrect

5-20 Chapter 5. Data Product Labels

Floating-Point Numbers

Real data values may be expressed as either floating -point numbers with a decimal point or in
scientific notation with an exponent. Scientific notation is formatted in the standard manner for
program 1/O, using the letter “E” as an exponentiation operator. Valuesthat aret o be interpreted
as real numbers must not be enclosed in quotation marks of any kind.

Examples
TELESCOPE_LATI TUDE = 33.476 Correct
TELESCOPE_LATI TUDE = 3. 3476E+01 Correct
TELESCOPE_LATI TUDE = "33. 476" Incorrect
TELESCOPE_LATI TUDE = 3.3476 x 10701 Incorrect

Dates and Times

Date and time values must be in the PDS standard date/time format: YYYY-MM-
DDThh:mm:ss.sss. Date and time values must never be enclosed in quotes of any kind.

Examples

START_TI ME

1990- 08-01T23: 59: 59 Correct

START_TI ME

"1990-08-01T23: 59: 59" Incorrect

Chapter 5. Data Product Labels

data elements
data identification, 5-16
descriptive, 5-19
file characteristics, 5-11
proposing new, 5-17
required and optional, 5-12
standards identifiers, 5-10
syntax
summary, 5-20
dataidentification data elements, 5-16
dataidentification elements
required for ancillary data, 5-17
required for Earth-based data, 5-17
required for spacecraft data, 5-17
data objects
definition of, 5-13
object definitions, 5-19
standard data objects, 5-19
data products
labels, 5-1
descriptive data elements, 5-19
END statement, 5-20
file characteristics data elements , 5-11
FILE_NAME, 5-13
FILE_RECORDS, 5-11
Label
structure
combined detached example, 5-7
LABEL _RECORDS 5-11
LABEL _REVISION NOTE, 5-11
labels, 5-1
and SFDU labels, 5-11, 5-20
attached, 5-1
combined detached, 5-1, 5-6
descriptive text pointers, 5-19
detached, 5-1
END statement, 5-20
format, 5-3
character set, 5-3
minimd, 5 -8, 5-9
Object Description Language (ODL), 5-1
object pointers, 5-13
attached label examples, 5-14
detached label examples, 5-15
padding, 5-3

5-21

5-2

pointers
to data objects, 513
to descriptive text, 5-19
to structurefiles, 5-19
standard data objects, 5-19
standards identifiers, 5-10
structure
attached and detached, 5-4
combined detached, 5-6
minimd, 5 -9
minimal example, 5-10
structure pointers, 5-19
Labels
structure
attached/detached example, 5-5
minimal labdl , 5-8
minimal labels, 5 -15
object definitions
format, 5-19
Object Description Language (ODL), 5-1
object pointers, 5-13
attached label examples, 5-14
formats, 5-13
syntax, 5-14
Planetary Science Data Dictionary (PSDD), 5-1, 5-16, 5-19
pointers
structure pointers, 5-19
to descriptive text, 5-19
RECORD_BYTES 5-11
RECORD_TYPE, 5-11
Standard Formatted Data Unit (SFDU), 5-11, 5-20
standards identifier data elements, 5-10

Chapter 5. Data Product Labels

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-1

Chapter 6. Data Set / Data Set Collection
Contents and Naming

The Data Set / Data Set Collection Contents and Naming standard defines the conventions for
maintaining consistency in the contents, organization and naming of archive quality data sets

Data Sets are defined in terms of Data Products, which were introduced in Chapter 4. A data set
is an aggregation of data products with a common origin, history, or application. A data set
includes primary (observational) data plus the ancillary data, soft ware, and documentation
needed to understand and use the observations. Filesin a data set share a unique data set name,
share a unique data set identifier, and are described by asingle DATA_SET catalog object (or
equivalent).

Data Set Collections are defined in terms of data sets. A data set collection is an aggregation of
several data setsthat are related by observation type, discipline, target, or time which are to be
treated as a unit; that is, they are intended to be archived and distributed together. Data setsin a
data set collection share a unique data set collection name, share a unique data set collection
identifier, and are described by asingle DATA_SET_COLLECTION object (or equivalent).
One of the primary considerations in creating a data set collection isthat the collection as a
whole provides more utility than the sum of the utilities of the individual datas ets.

Figure 6.1 shows the relationships among Data Products, Data Sets, and a Data Set Collection.

DATA SET COLLECTION

|
| |

DATA SET #1 DATA SET #2

| !
—

PRIMARY PRIMARY AMCILLARY DATA PRODUCTS
DATA DATA — CALIBRATION

PRODUCT #1 PRODUCT #2 B =gkl
— DOCUMENTATION
— CATALOG INFORMATION
— INDEX FILES
— DATA DICTIONARY FILES
— GAZETTEER
— SOFTWARE

Figure 6.1 Relationshipsamong a Data Set Collection, its Data Sets, and their Data Products.

6-2 Chapter 6. Data Set/Data Set Collection Contents and Naming

Note that with respect to Figure 6.1, additional data sets (e.g., Data Set #2) have structure similar
to Data Set #1. And, Ancillary Data Products are often organized into directories corresponding
to the subject areas shown (see Chapter 19 for a more detailed description of each directory).

Ancillary Data Products may include any or all of the following:

Calibration - Data products used in the conversion of raw measurements to physically
meaningful values or data products needed to use the data.

Geometry - Data products needed to describe the observing geometry. Examples include
SEDRs and SPICE files.

Documentation - Data products which describe the mission, spacecraft, instrument, and/or
dataset. These may include references to science papers or the papers themselves.

Catalog I nformation - Descriptive informatio n about a data set expressed in Object
Description Language (ODL) and suitable for loading into a catalog. For more information,
see Appendix B.

Index Files- Information that allows a user to locate the data of interest - atable of contents.
An example might be a table mapping latitude/longitude ranges to file names.

Data Dictionary Files- An extract of the Planetary Science Data Dictionary (PSDD) that is
pertinent to the data set and expressed in ODL .

Gazetteer - Information about the named features on atarget body associated with the data
Set.

Softwar e - Software libraries, utilities, and/or application programs to access/process the
data products.

6.1 Data Set Naming and | dentification

Each PDS data set must have a unique name (DATA_SET_NAME) and a unique identifier
(DATA_SET _ID), both formed from up to seven components. The components are listed here;
valid assgnments for each component are described in Section 6.3:

Instrument host

Target

I nstrument

Data processing level number
Data set type (optional)
Description (optional)

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-3

Version number

A DATA_SET_NAME must not exceed 60 charactersin length. Where the character limitation
is not exceeded, the full -length name of each component is used. If the full -length name istoo
long, an acronym is used to abbreviate components of the name. Where possible, each
component of the DATA_SET_NAME should identify and reflect the corresponding (acronym)
component used in forming the DATA_SET _ID.

The DATA_SET_ID cannot exceed 40 charactersin length. Each component of the
DATA_SET _ID isan acronym that identifies and reflects the corresponding (full -name)
component used in forming the DATA_SET_NAME. Withinthe DATA_SET_ID, acronyms are
separated by hyphens.

Multiple instrument hosts, instruments, or targets are referenced inaDATA_S ET_NAME or
DATA_SET_ID by concatenation of the values with aforward dash, "/", which isinterpreted as
"and." The dash may not be used in any other capacity inaDATA_SET _ID.

6.2 Data Set Collection Naming and | dentification

Each PDS data set collection must have a unique name (DATA_SET_COLLECTION_NAME)
and a unique identifier (DATA_SET_COLLEC TION_ID), both formed from up to six
components. A data set collection may contain data sets that cover several targets, be of

different processing levels, or have different instrument hosts and instruments. Since the
individual data sets will be identif ied by their own data set names, some of this information need
not be repeated at the collection level. Therefore, the DATA_SET_COLLECTION_NAME uses
asubset of the DATA_SET_NAME components in addition to a new component, the collection
name, which identi fies the group of related data sets. The components are listed here; valid
assignments for each component are described in Section 6.3:

Collection name

Target

Data processing level number (optional)
Data set type (optional)

Description (optional)

Version number

A DATA_SET_COLLECTION_NAME must not exceed 60 charactersin length. Where the
character limitation is not exceeded, the full -length name of each component is used. If the full -
length name is too long, an acronym should be substituted. Where pos sible, each component of
the DATA_SET_COLLECTION_NAME should identify and reflect the corresponding
(acronym) component used in forming the DATA_SET_COLLECTION_ID.

The DATA_SET_COLLECTION_ID must not exceed 40 characters in length. Each component
isan acronym that identifies and reflects the corresponding (full -name) component used in
forming the DATA_SET_COLLECTION_NAME.

6-4 Chapter 6. Data Set/Data Set Collection Contents and Naming

Multiple targets or data processing levels are referenced in the data set collection name or
identifier by concatenation of the val ues with aforward dash (/) which isinterpreted as "and."

6.3 Nameand ID Components

6.3.1 Restrictionson DATA_SET ID and DATA_SET_COLLECTION_ID

Within the DATA_SET _ID and DATA_SET_COLLECTION_ID, acronyms are separated by
hyphens. The only characters allowed are:

?? Uppercase characters, A-Z

?? Digits, 0-9

?? The hyphen character, " -"

?? Theforward dash, "/"

?? The period character, ".", but only as part of a numeric component (e.g., " vV1.0" but not
"CA")

6.3.2 Standard Acronyms, Abbreviations, and Assignments

This section details the standard acronyms and abbreviations required for formulating the
DATA_SET_ID and DATA_SET_COLLECTION_ID values. They are also recommended for
use, as appropriate, in the formation of other NAME - and I D-class element values. Standard
values for data dictionary elements mentioned in the following sections are listed in the PSDD.
New values are added to these lists as needed by the PDS data engineers.

1. Instrument host name and ID values are selected from the standard value list of the
corresponding PSDD entry (INSTRUMENT_HOST_NAME or INSTRUMENT_HOST _ID
data element). Note that the acronym EAR has been used for Earth-based data sets without a
specific instrument host.

2. Callection names and | Ds are created as needed by the data preparers in conjunction with
the PDS data engineer. Current |1Ds and their corresponding nam es include:

GRSFE Geological Remote Sensing Field Experiment
IHW International Halley Watch
PREMGN Pre-Magellan

3. Target name vaues are selected from the standard values listed in the PSDD for the
TARGET_NAME element. Target acronyms are selected from the following list:

Target ID Target Name

Chapter 6. Data Set/Data Set Collection Contents and Naming

oOoO>»

AL

SEIr«eTmo

m
—

-<><<C8))£J/>)U);U'UZ

Asteroid
Comet
Cdlibration
Dust

Earth
Mercury
Jupiter
Moon

Mars
Meteorite
Neptune
Pluto

Ring

Saturn
Satellite
Solar System
Uranus
Venus
Other, (e.g., Checkout)
Sky

6-5

NOTE: Satellitesor rings are referenced in DATA_SET_NAME sand DATA_SET IDsby

the concatenation of the satellite or ring identifier with the associated planet identifier; for

example:
JR Jupiter’srings
JSA Jupiter’s satellites

If Jupiter data are also included in the ring and/or satellite data set then only Jupiter (*J’) is

referenced as the target.

Note that in some cases this component represents the TARGET _TY PE rather than the target

name, for example:

A Asteroid

C Comet
CAL Cdlibration
MET Meteorite

Valid values for the TARGET _TY PE data element are listed in the PSDD.

4. Instrument name and I D values are taken either from the corresponding PSDD element, or

from the following list of values designated for certain types of ancillary data:

Names: INSTRUMENT_NAME data element in the PSDD
IDs: INSTRUMENT _ID data element in the PSDD

6-6 Chapter 6. Data Set/Data Set Collection Contents and Naming

Ancillary Data: ENG or ENGINEERING for engineering data sets
SPICE for SPICE data sets
GCM for Global Circulation Model data
SEDR for supplemental EDR data
POS for positional data

5. Data processing level number isthe National Research Council (NRC) Committee on Data
Management and Computation (CODMAC) data processing level number .

Normally adata set contains data of one processing level. PDS recommends that data of
different processing levels be treated as different data sets. However, if it is not possiblet o
separate the data, then a single data set with multiple processing levels will be accepted. Use
the following guidelines when specifying the data processing level number component of the
data set identifier and name:

(@) the processing level number of the | argest subset of data or
(b) the highest processing level number if there is no predominant subset.

Level Type Data Processing L evel Description
1 Raw Data Telemetry data with data embedded.
2 Edited Data Corrected for telemetry errors and split or decommutated into a data set for a given

instrument. Sometimes called Experimental Data Record. Data are also tagged with
time and location of acquisition. Correspondsto NASA Level O data.

3 Calibrated Data Edited data that are till in units produced by i nstrument, but that have been corrected
S0 that values are expressed in or are proportional to some physical unit such as
radiance. No resampling, so edited data can be reconstructed. NASA Level 1A.

4 Resampled Data Datathat have been resampled in the ti me or space domains in such away that the
original edited data cannot be reconstructed. Could be calibrated in addition to being
resampled. NASA Level IB.

5 Derived Data Derived results, as maps, reports, graphics, etc. NASA Levels 2 through 5.

6 Ancillary Data Nonscience data needed to generate calibrated or resampled data sets. Consists of
instrument gains, offsets, pointing information for scan platforms, etc.

7 Correlative Data Other science data needed to interpret space-based data sets. May include ground-
based data observations such as soil type or ocean buoy measurements of wind drift.

8 User Description Description of why the data were required, any peculiarities associated with the data
sets, and enough documentation to allow secondary user to extract information from
the data.

N N Not Applicable

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-7

6. Data set type provides additional identification if, for example, the CODMAC data
processing level component is not sufficient to identify the type or level of data. Following is
alist of valid IDs and names that may be used for this component.

NOTE: Several of the values in this table are currently u nique to a particular mission (e.g.,
BIDR and MIDR were used on Magellan). These values may be used on other missions, if
deemed appropriate.

1D Name
ADR Anayzed Data Record
BIDR Basic Image Data Record
CDR Composite Data Record
CK SPICE CK (Pointing Kernel)
DDR Derived Data Record
(possibly multiple instruments)
DIDR Digitalized Image Data Record
DLC Detailed Level Catalog
EDC Existing Data Catalog
EDR Experiment Data Record
EK SPICE EK (Event Kerndl)
GDR Global Data Record
IDR Intermediate Data Record
IK SPICE IK (Instrument Kernel)
LSK SPICE LSK (Leap Second Kernel)
MDR Master Data Record
MIDR Mosaicked Image Data Record
ODR Original Data Record
PCK SPICE PCK (Planetary Constants Kernel)
PGDR Photograph Data Record
RDR Reduced Data Record
REFDR Reformatted Data Record
SDR System Data Record
SEDR Supplementary Experiment Data Record
SPK SPICE SPK (Ephemeris Kernel)
SUMM Summary (data) (to be used in the browse function)
SAMP Sample datafrom adata set (not subsampled data)

7. Description isoptional, but allows the data provider to describe the data set better — for
example, to identify a specific comet or asteroid. Following isalist of example values (both
I Ds and names) that can be used for this component.

6-8

ALT/RAD

BR

CLOUD

ELE
ETA-AQUAR
FULL-RES
GIACOBIN-ZIN
HALLEY

ION

LOS

MOM

PAR

SA
SA-4.0SEC
SA-48.0SEC

Chapter 6. Data Set/Data Set Collection Contents and Naming

Altimetry and Radiometry
Browse

Cloud

Electron

Eta-Aquarid Meteors

Full Resolution

Comet P/Giacobini-Zinner
Comet P/Halley

lon

Line of Sight Gravity

Moment

Parameter

Spectrum Analyzer

Spectrum Analyzer 4.0 second
Spectrum Analyzer 48.0 second

8. Verson number is determined as follows;

(@

(b)

6.4 Examples

If there is not a previous version of the PDS data set/data set collection, then use
Verson 1.0.

If a previous version exists, then PDS recommends the following:

If the data sets/data set collections contain the same set of data, but use a
different medium (e.g., CD -ROM), then no new version number is
required (i.e., no new data set identifier). The invent ory system will handle
the different media for the same data set.

If the data sets/data set collections contain the same set of data, but have
minor corrections or improvements such as a change in descriptive
labeling, then the version number isinc remented by a tenth. For example,

V1.0 becomesV1.1.

If adata set/data set collection has been reprocessed, using, for example, a
new processing algorithm or different calibration data, then the version
number is incremented by one (V1.0 would become V2.0). Also, if one
data set/data set collection contains a subset, is a proper subset, or isa
superset of another, then the version number is incremented by one.

For adata set containing the first version of Mars Cloud Data derived from the Mariner 9, Viking
Orbiter 1, and Viking Orbiter 2 imaging subsystems, the data set name and identifier would be

DATA_SET_NAME = "MR9/V01/V02 MARS I SS/VIS 5 CLOUD V1. 0"

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-9

DATA SET_ID = "MR9/V01/V02-M 1SS/ VI S-5- CLOUD- V1. 0"
In this example the optional data set typeis not used. The other components are:

?? Instrument hosts are Mariner 9, Viking Orbiter 1 and Viking Orbiter 2

?? TargetisMars

?? Instruments are the Imaging Science Subsystem and Visual Imaging Subsystem
?? DataProcessing Level number is5

?? Descriptionis CLOUD

?? Verson number isV1.0

Note that the individual componentsinthe DATA _SET_ID closely match the corresponding
components used in the DATA_SET_NAME.

The Pre-Magellan Data Set Collection contains radar and gravity data smilar to the kinds of data
that Magellan collected and was used for pre-Magellan analyses of Venus and for comparisons to
actual Magellan data. In conversation the data set might be described as Pre -Magellan Earth,
Moon, Mercury, Mars, and Venus Resampled and Derived Radar and Gravity Data Version 1.0.
The data set collection name and ID were:

"PRE- MAGELLAN E/ L/IH MV 4/ 5 RADAR GRAVI TY
DATA V1. 0"

DATA_SET_COLLECTI ON_NAME

DATA _SET_COLLECTI ONLI D "PREMGN- E/ L/ H M V- 4/ 5- RADY GRAV- V1. 0"

6-10 Chapter 6. Data Set/Data Set Collection Contents and Naming

A I

ancillary data product

(6010 (< 0| £SO PPOPPRPPPPR PP 6-2

(o0] 10 05 (o =0 = 0 1) ORI 6-2
archive quality

01z 62 B RSP OPRRTRRTRR 6-1

0ata SEt COHBCTION. ... ettt e b e e st e e st e e sateesneeeans 6-1

uél#
(o 1] o= o 1o = = RS 6-2
(o= = oo 101 {0 .4°= 1 o] o KU 6-2
CODMAC NUMDENSveviiiiiiciciiite e See data processing level
%

(0= k= W Toi (o] 7= VN {18 =TSSR 6-3
data ProCESSING TEVELo ettt st eennre e e aeeeaas 6-7

CODMAC NUMDEI'S ...ttt ettt et rae e st e e e snbe e e nnteeebeeesnbeeeeenneeeennes 6-6
data product

= = o R N F= = B < PSR 6-1

relation to data SEt COIECLIONooiiiiiiiii et 6-1
data set

(600 (< 0| £SO POPPPPPPPR PP 6-1

(012 1071 o] o I PRSP 6-1

(g7 aa g lo Jr=10 o Mo (= (] Tor= (o o USRS 6-3

PrOCESSING [EVEL ... ettt e e bt e s b e e st e e e nnreeeneas 6-7

relation tO data PrOTUCES.eiiiiie ettt e e ne e s nbe e e e nnes 6-1

reprocessed, VEIrSION NUMDEYooiiiiiiiiieeiee ettt ettt e e s nne e e sae e e e seeesnseaenneeas 6-9
data set collection

(600 (< 0| £SO RRPPPR PP 6-1

(o0] (= 05 (o =0 = 0 1) ORISR 6-2

(012 1071] o ISR 6-1

(g7 ga T g o JF=10 o Mo (= 1] Tor= (o o USRS 6-4

relation tO data PrOUUCES.eii ettt st e e ne e e snbe e e e nes 6-1

reProCesSed, VErSION NUIMDEYoiiiiieiiieeeieeesitiieeestee e st e seaee e seessbee e e snseeesseeesseeesnseeenneeas 6-9
data set description

26 (0017 100 ST PSP PP PPRPPPP 6-8
data set type

26 (0017 100 ST PP PP PEPPRPPP 6-7
DATA_SET_COLLECTION_ID

CONSLILUENT COMPONENTS.......eii ittt ettt sttt e et e e s e et e e e snb e e e saseeesseeesnbeeesnsnnenans 6-4

(0= 6 = 1Y o= TP 6-7

(0155 o 1] 01 £ [o [PPSR 6-8

6-2 Chapter 6. Data Set/Data Set Collection Contents and Naming

LS 010 [PPSR 6-10
standard acronyms and abDreviationsoceeeiiieiiiiii e 6-5
)Y 1K= QTP POPPPPRPPPPTPI 6-4
(LS 65 [0 01 0010 0o SRR UPRRRRRI 6-9
DATA_SET_COLLECTION_NAME
CONSLITUENT COMPONENTS.......eiiiiiie et etee et ettt e st e s et e e e snb e e e saae e e seeesnbeeesnsnneeans 6-4
LS 010 [PPSO 6-10
DATA_SET_ID
CONSLILUENT COMPONENTSeei ittt ettt sttt e st e e s e et e e snbe e e ssseeenneeesnbaeesn nnneeans 6-3
[0z 6 1Y o= TP 6-7
(0155 o 1] 01 £ o 1RSSR 6-8
LS 010 [SRR 6-9
satellite and NG NAIMES TN ...coiiii et e et e e s e e e sae e e s baeesneeeeens 6-6
standard acronyms and abDreviationsceeeiiieiii i 6-5
)Y 1K= QTP POPPPPRPPPPPI 6-4
1L 65 [0 01 0010 0o SR RPUR PSRRI 6-9
DATA_SET_NAME
CONSLITUENT COMPONENTS.......eii ittt ettt e st e e s e e be e e snb e e e ssaeeeseeesnbeeesnsnnenens 6-3
LS 010 [ST 6-9
satellite and NG NAIMES TN ...cooiii e e et e e s e e sne e e s saeesneeeaeas 6-6
(o[Toi19.07< o 1= 1 o o PR TR 6-2
{%ﬁ
(8T 74S 1 (== go = - TSP PSSP URPOPR 6-3
(01501007 101 - F TSSO PRSPPI 6-2
uélé
106 (= {1 = TSP R PP PR PPPOPPTPRIN 6-3
uélé
processing level NUMDEN ... See data processing level
uélé
SOFEWEAIE FIIES ... ettt bt be e n e nneesanas 6-3
H%I#
target
26 (0] 017/ 100 TP PP PEPPRPPP 6-5
TARGET_NAME

= ot 0 01770 0 81 PRSP 6-5

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-3

- v 1

VB S ON MUY ..ot et e e e e e et e e e e e e e e e e e e e eee e e eeeeen e eeennaeeeerennaaaeeenens 6-9

Chapter 7. Date/Time Format 7-1

Chapter 7. Date/Time Format

PDS has adopted a subset of the International Standards Organization Standard (1SO/DIS) 8601
standard entitled “ Data Element and Interchange Formats - Representations of Dates and Times’,
and applies the standard across all disciplinesin order to give the system generality. See also
Dates and Timesin Object Description Language (Chapter 12, Section 12.3.2) of this document.

It isimportant to note that the ISO/DIS 8601 standard covers only ASCII representations of dates
and times.

7.1 Date/Times
In the PDS there are two recognized date/time formats:

CCYY-MM-DDTHH:MM:SS.sssZ (preferred format)
CCYY-DDDTHH:MM:SS.sssZ

Each format represents a concatenation of the conventional date and time expressions with the
two parts separated by the letter T:

CcC - century (00-99)

YY - year (00-99)

MM - month (01-12)

DD - day of month (01-31)

DDD - day of year (001-366)

T - date/time separator

HH - hour (00-23)

MM - minute (00-59)

SS - second (00-59)

Sss - fractions of second (000-999)

The time part of the expression represents time in Universal Time Coordinated (UTC) , hence the
Z at the end of the expression (see Section 7.3.1 for further discussion). Note that in both the
PDS catalog files and data product labelsthe “Z” is optiona and is assumed.

PDS standard date/time format, i.e., the preferred date/time format, is: CCYY -MM-
DDTHH:MM:SS.sssZ.

Date/Time Precision
The above date/time formats may be truncated on the right to match the precision of the
date/time value in any of the following forms:

7-2 Chapter 7. Date/Time Format

1998

1998-12

1998-12-01
1998-12-01T23
1998-12-01T23:59
1998-12-01T23:59:58
1998-12-01T23:59:58.1

ODL Date/Time Information

Chapter 12, Object Description Language (ODL) Specification and Usage, Section 12.3.2, Dates
and Times, of this document provides additional information on the use of ODL in date/ti me
formation, representation, and implementation.

7.2 Dates
The PDS alows dates to be expressed in conventional and native (alternate) formats .

7.2.1 Conventional Dates

Conventional dates are represented in 1SO/DIS 8601 format as either year (including century),
month, day-of-month (CCYY -MM-DD), or as year, day-of-year (CCYY-DDD). The hyphen
character (‘-*) is used as the field separator in this format. The former is the preferred format for
use in PDS labels and catalog filesand isreferred to as PDS standard date format, but either
format is acceptable.

7.2.2 Native Dates

Datesin any format other than the ISO/DIS 8601 format described above are considered to bein
aformat native to the specific data set, thus “ native dates’. Native date formats are specified by
the data preparer in conjunction with the PDS data engineer. Mission -elapsed days and time-to-
encounter are both examples of native dates.

7.3 Times
The PDS alows times to be expressed in conventional and native (alternate) formats.

7.3.1 Conventional Times

Conventional times are represented as hours, minutes, and seconds using the full 1SO/DIS 8601
format: HH:MM:SS.sss. Note that the hours, minutes, and integral seconds fie lds must contain
two digits. The colon character (‘) isused as afield separator. The seconds field may include a
fractiond part if appropriate; if so, a period is used as the decimal point (the European -style
comma may not be used). The fractional par t may not exceed 3 digits (thousandths of a second).

The PDS has adopted the use of Universal Time Coordinated (UTC) for expressing time, using

Chapter 7. Date/Time Format 7-3

the format HH:MM:SS.sssZ. Note that in both the PDS catalog files and data product labels the
“Z" isoptiona and is assumed. Fractions of seconds cannot exceed a precision of milliseconds.
This format is hereafter referred to as PDS standard time format.

The START_TIME and STOP_TIME data elements required in data product labels and catalog
templates use the UTC format. For data collected by spacecraft-mounted instruments, the date/
time must be atime that corresponds to “spacecraft event time”. For data collected by
instruments not located on a spacecraft, thistime shall be an earth -based event time value.

Adoption of UTC (rather than spacecraft-clock-count, for example) as the standard facilitates
comparison of data from a particular spacecraft or ground -based facility with data from other
Sources.

7.3.2 Native Times

Timesin any format other than the |SO/DIS 8601 format described above are considered to bein
aformat native to the data set, and thus “ native times ”. The NATIVE_START_TIME and
NATIVE_STOP_TIME elements hold the native time equivalents of the UTC valuesin
START_TIME and STOP_TIME, respectively.

There is one native time of particular interest, however, which has specific key words associated
with it. The spacecraft clock reading (that is, the “count”) often provides the essential timing
information for a space-based observation. Therefore, the elements
SPACECRAFT_CLOCK_START_COUNT and SPACECRAFT_CLOCK_STOP_COUNT are
required in labels describing space -based data. This value is formatted as a string to preserve
precision.

Note that in rare cases in which there is more than one native time relevant to an ob servation, the
data preparer should consult a PDS data engineer for assistance in selecting the appropriate PDS
elements.

The following paragraphs describe typical examples of native time formats.

1. Spacecraft Clock Count (sclk) - Spacecraft clock count (sclk) provides a more precise
time representation than event time for instrument -generated data sets, and so may be
desirable as an additiona time field. In atypical instance, a range of spacecraft -clock-
count values (i.e., astart-and a stop-value) may be required.

Spacecraft clock count (SPACECRAFT_CLOCK_START_COUNT and
SPACECRAFT_CLOCK_STOP_COUNT) shall be represented as aright -justified
character string field with a maximum length of thirty characters. This format will
accommodate the extra decimal point appearing in these data for certain spacecraft and
other special formats, while also supporting the need for simple comparison (e.g., “>" or
<") between clock count values.

Note that if the spacecraft clock values are not strictly numeric strings (for example, if

7-4

Chapter 7. Date/Time Format

they contain colon separators), care should be taken in dealing with blank padding and
justification of the string value. If necessary, non -numeric strings may be left -justified to
ensure that clock values will sort in the expected way.

Example
SPACECRAFT_CLOCK_START_COUNT = " 1234: 36. 401" correct
SPACECRAFT_CLOCK_START_COUNT = "1234: 36. 401 " incorrect

Longitude of Sun - Longitude of Sun (“Ls") is a derived data value that can be

computed, for a given target, from UTC.

. Ephemeris Time- Ephemeristime (ET) iscalculated as“TAI + 32.184 sec. + periodic

terms’. The NAIF S and P kernels have data that are in ET, but the user (via NAIF
ephemeris readers which perform data conversion) can obtain the UTC values.

. Rdlative Time - In addition to event times, certain “relative time ” fields will be needed to

represent data times or elapsed times. Time -from-closest-approach is an example of such
adata element. These times shall be presented in a (D, H,M,S) format as a floating point
number, and should include fractional seconds when necessary. The inclusion of “day” in
relative times is motivated by the possible multi -day length of some delta times, as could
occur, for example, in the case of the severa -month Galileo Jupiter orbit.

Local Times- For agiven celestial body, LOCAL_TIME isthe hour relative to midnight

| in units of 1/24th the length of the solar day for the body.

6. Alternate Time Zones (Relative to UTC) - When times must be expressed according to

an alternate time zone, they shall consist of hours, minutes, seconds, and an offset, in the
form HH:MM:SS.sss+n, where n is the number of hours from UTC.

Chapter 7. Date/Time Format

dternate time zone, 7-5
date format
conventional, 7-2
native, 7-2
precision, 7-1
syntax, 7-1
Ephemeristime (ET), 7-4
local time, 7-4
LOCAL_TIME, 7-4
native time
examples, 7-3
relative time, 7-4
sclk. See spacecraft clock count (sclk)
spacecraft clock count (sclk), 7-3
syntax, 7-4
SPACECRAFT_CLOCK_START_COUNT, 7-3,7-4
SPACECRAFT_CLOCK_STOP_COUNT, 7-3, 7-4
START_TIME, 7-3
STOP_TIME, 7-3
time format
conventional, 7-2
native, 7-3
PDS standard time format, 7-3
precision, 7-1
syntax, 7-1
Universal Time Coordinated (UTC) . See time format
date/time formats, usein
UTC, useof, 7-5
in labels and catalog files, 7 -3

7-5

Chapter 8. Directory Typesand Naming 81

Chapter 8. Directory Types and Naming

The Directory Naming standard defines the conventions for naming directories on a data volume.
This chapter lists the standard directories established by PDS, plus the rules for forming
subdirectory names and abbreviations.

8.1 Standard Directory Names

When any of the following directories are included on an archive product, the following standard
directory naming conventions are used.

Directory Contents

CATALOG PDS catalog files

DOCUMENT Documentation, supplementary and ancillary information to assist in
understanding and using the data products

EXTRAS “Vaue added” elements included by the data preparer, but outside the scope
of the PDS archive requirements

GAZETTER Tables of information about the geological features of atarget

INDEX Indices to assist in locating data of interest
LABEL “Include” files which describe specific aspects of the data format and
organization

SOFTWARE Utilities, application programs, or subprograms used to access or process the
data

The following standard directory names are recommended for use on archive volumes. Note that
these directory names are reserved for the uses described below. That is, if they appear on an
archive volume, they must contain the indicated information:

CALIB Calibration files used in the original processing of the data, or needed to use
the data

GEOMETRY Filesdescribing the observational geometry (e.g., SEDRs, SPICE kernels)
BROWSE Reduced resolution versions of data products
DATA Contains one or more subdirectories of data products. The DATA

subdirectory is used to unclutter the root directory of avolume by providing a
single entry point to multiple data subdirectories.

8-2

Chapter 8. Directory Types and Naming

Note that some data sets may not contain all the components above and, as aresult, do not need
all of the directories listed. For example, many image data sets do not include geometry files and
so do not need a GEOMETRY directory. See the Volume Organization and Naming chapter of
this document for alist of required and optional subdirectories on any specific volume.

8.2

1.

Formation of Directory Names

A directory name must consist of only uppercase alphanumeric characters and the
underscore character (i.e.,, A-Z, 0-9, or “_"). No lowercase |etters (i.e., az) or special
characters (e.g., “#,“&”, “*") are dlowed.

A directory name must not exceed 31 charactersin length, to comply with the ISO 9660
level 2 mediainterchange standard.

The first letter of adirectory name must be an a phabetic character, unless the directory
name represents a year (e.g., 1984).

If numeric characters are used as part of the name (e.g., DIR1, DIR2, DIR3) the numeric
part should be padded with leading zeros up to the maximum size of the numeric
(DIR0001, DIR0002, DIR3267).

Directories which contain arange of similarly named files must be assigned directory
names using the portion of the filename which encompasses al the filesin the directory,
with “X’s" used to indicate the range of values of actual filenamesin the directory.

For example, the PDS Uranus Imaging CD-ROM disk contains image files that have
filenames that correspond to SPACECRAFT_CLOCK_START_COUNT values. The
directory that contains the image files ranging from C2674702.IMG through
C2674959.IMG has the directory name C2674XXX.

Directory names must use full length terms whenever possible (e.g., SATURN,
MAGELLAN, CRUISE, NORTH, DATA, SOFTWARE). Otherwise, directory names
must be constructed from abbreviations of full-length names using the underscore
character to separate abbreviated terms, if possible. The meaning of the directory name
should be clear from the abbreviation and from the directory structure.

Chapter 8. Directory Typesand Naming 8-3

For example, the following directory structure can be found on the Voyager 2 Images of
Uranus CD-ROM Volume 1:

ROOT —— ARIEL
—— DOCUMENT
— INDEX
—— OBERON
— TITANIA
— UMBRIEL
—— UNKNOWN
—— URANUS — C2674XXX

C2675XXX

—— U_RINGS

— éé687X XX
—— C2674XXX

In this case, it is clear from the context that the directory U_RINGS is the abbreviated
form of URANUS _RINGS.

7. Highlevel directoriesthat deal with data sets covering arange of planetary science
disciplines or targets shall adhere to the following hierarchy:

A Planetary science directory: PLANET
Planetary body subdirectories: MERCURY, MOON, MARS, VENUS, COMET
Discipline subdirectories: ATMOS, IONOSPHE, MAGNETOS, RING,

SURFACE, and SATELLIT
(Use satellite name if numerous files exist)

8. The recommended SOFTWARE subdirectory naming convention is described in the
Volume Organization and Naming chapter of this document. Either a platform-based
model or an application-based model can be used in defining software subdirectories. In
aplatform-based model, the hardware platform, operating system and environment must
be explicitly stated. If there is more than one operating system/environment supported
they are addressed as subdirectories under the hardware directories. When thereisonly
one, the subdirectory may be promoted to the hardware directory.

For example, if software for the PC for both DOS and Windows were present on the
volume, the directories SOFTWARE/PC/DOS and SOFTWARE/PC/WIN would exist. If
only DOS software were present, the directory would be SOFTWARE/PCDOS.

84 Chapter 8. Directory Types and Naming

8.3 Path Formation Standard

The PDS standard for path namesis based on Level 1 of the ISO 9660 international standard. A
pathname may consist of up to eight directory levels. Each directory nameis limited to eight
characters; the forward-slash character (“/”) is used as the separator in path names. Path names
typically appear on PDS volumes as data in index tables for locating specific files on an archive
volume. They may also appear as valuesin alimited number of keywords (e.g.,
FILE_SPECIFICATION_NAME, PATH_NAME, and LOGICAL_VOLUME_PATH_NAME).

The following are examples of valid values for the keywords listed above:

TGI5NXXX/TGI5NIXX/TG15N12X identifies the location of the directory TG15N12X
at thethird level below the top level of an archive
volume.

DOCUMENT identifiesa DOCUMENT directory within the root
directory.

Note: Theleading slash is omitted because these are relative paths. Thetrailing slashis
included so that concatenation of PATH_NAME and FILE_NAME will yield thefull file
specification. See the File Specification and Naming chapter of this document for more
information.

Previous PDS standards allowed the use of the DEC VMS syntax for path names. While PDS
support for this format continuesto exigt, it is recommended that all future volumes use the
UNIX syntax instead.

84 TapeVolumes

When magnetic tape is the archive medium, a disk directory structure cannot be used because the
medium does not support multi-level directories. In this case, files must be stored sequentially.

A directory structure for the volume must be designed in any case, so that when the data are
transferred to a medium that supports hierarchical file management they can be placed into an
appropriate directory structure. A DIRECTORY object must be included with each tape volume
within the VOLUME object. This object is then used to describe how the sequential files should
be loaded into a hierarchical structure.

8.5 Exceptionsto These Standards

In certain cases, the archive medium used to store the data, the hardware used to produce the data
set, or the software operating on the data may impose restrictions on directory names and
organization. In these cases, consult a PDS data engineer for guidance in designing the archive
volume structure.

Chapter 8. Directory Typesand Naming

directories
path names, 8-4
reserved names, 8-1
standard directories, 8-1
DIRECTORY, 8-4
directory names
and 1SO 9660, 8-2
syntax, 8-2
directory naming, 8-1
directory paths
and 1SO 9660, 8-4
syntax, 8-4
directory structure
example, 8-3
on sequential media, 8-4
tape volumes, 8-4
VOLUME, 8-4

Chapter 9. Documents 9-1

Chapter 9. Documents

Supplementary or ancillary reference materials are usually included with archive products to
improve their short - and long-term utility. These documents augment the internal documentation
of the product labels and provide further assistance in understanding the data products and
accompanying materials. Typical archive documents include:

?? Flight project documents

?? Instrument papers

?? Science articles

?? Volume information

?? Software Interface Specifications (Sl Ss)
?? Software user manuals

The PDS criteria for inclusion of a document in the archive are:

1. Would thisinformation be helpful to a data user?
2. Isthe materia necessary?
3. Isthe documentation complete?

In general, the PDS seeks to err on the side of completeness.

Each document to be archived must be prepared and saved in a PDS -compliant format, including
aPDS label. Documents are delivered in the DOCUMENT directory of an archive volume (see
the Volume Organization and Naming chapter of this document).

A flat, human -readable ASCI| text version of each document must be included on the volume,
although additional versions may be included in other supported formats at the option of the data
producer. “Flat ASCII text” means the file may contain only the standard, 7 -bit printable ASCI|
character set, plus the blank character and the carriage -return and linefeed characters as record
delimiters. A fileis“human -readable’ if it is not encoded and if any special markup tags which
may be included do not significantly interfere with an average user’s ability to read the file. So,

for example, simple HTML filesand TeX/LaTeX files with relatively little markup embedded in
the text are generally considered human -readable and may, therefore, be used to satisfy the above
ASCII text version requirement.

Note that the PDS takes the requirement for complete documentation very seriously. Documents
that are essential to the understanding of an archive are considered as important as the data files
themselves. Furthermore, including a document in a PDS archive constitutes publication (or re -
publication) of that document. Consequently, documents prepared for inclusion in an archive are
expected to meet not only the PDS label and format requirements, but aso the structural,
grammatical and lexical requirements of arefereed journal submission. Documents submitted for
archiving w hich contain spelling errors, poor grammar or illogical organization will be rejected
and may ultimately lead to the rejection of the submitted data for lack of adequate
documentation.

9-2 Chapter 9. Documents

9.1 PDSODbjectsfor Documents

PDS labels of documentation files use either the TEXT or DOCUMENT object, as appropriate.
The DOCUMENT object is usually used with documentation files found in the DOCUMENT
directory of an archive volume. Files described by a DOCUMENT obj ect may be in any of the
formats described in Section 9.2.

The TEXT object may only be used with ASCI| text files containing no markup. TEXT objects
are most often used for small text files occurring anywhere in the archive volume (for example,
the AAREADME.TXT filein the root directory or the DOCINFO.TXT file inthe DOCUMENT
directory).

9.1.1 TEXT Objects

TEXT objectsare preferred for stand-alone documents with a narrow focus. For example, the
AAREADME.TXT or DOCINFO.TXT files on the archive volume are usually labeled using a
TEXT object. Files described by a TEXT object must:

a) Beplain, flat ASCII files without markup tags (i.e., no HTML or TeX files), encoded
graphics (as in PostScript files), or p rogrammatic structures (i.e., no source code files or
scripting commands); and

b) Have afile extension of “. TXT”

9.1.2 DOCUMENT Objects

DOCUMENT objectsare preferred when severa versions of the same file are provided or when
there are several component files constituting a single version of the document - for example,
when graphics are included in separate files from the text. Any file labeled using a
DOCUMENT object must:

a) Beinone of the PDS-approved formats listed below; and

b) Usethe appropriate object characteristics (listed below) for the DOCUMENT object
parameters and the file extension.

DOCUMENT labels are most often combined detached labels, since attaching them to most of
the formats listed below would make the combined file unus able in its customary environment
(Microsoft Word, for example, cannot recognize “.DOC” files with attached PDS labels).

Chapter 9. Documents

9-3

Format Object I nterchange Document For mat File Extension
Format
Plain ASCII Text |ASCII_DOCUMENT ASCII TEXT ASC
HTML HTML_DOCUMENT |ASCII HTML .HTM or HTML*
TeX TEX_DOCUMENT ASCII TEX TEX
LaTeX LATEX_DOCUMENT |ASCII LATEX TEX
Adobe PDF PDF_DOCUMENT BINARY ADOBE PDF .PDF
MS Word WORD_DOCUMENT [BINARY MICROSOFT WORD .DOC
Rich Text RTF_DOCUMENT BINARY RICH TEXT RTF
GIF GIF_DOCUMENT BINARY GIF .GIF
JPG JPG_DOCUMENT BINARY JPG JPG
Encapsulated EPS DOCUMENT BINARY ENCAPSULATED .EPS
Postscript POSTSCRIPT
PNG PNG_DOCUMENT BINARY PNG PNG
Postscript PS DOCUMENT BINARY POSTSCRIPT .PS
Tagged Image TIFF_DOCUMENT BINARY TIFF .TIFor .TIFF
File Format

* See chapter File Specification and Naming regarding extensions with more than three
characters.

Example: “MYDOC” is a document ation file to be included in the DOCUMENT directory of an
archive volume. Two versions will be supplied: aflat ASCII version with the graphicsin
separate TIFF files;, and a Microsoft Word version with in -line graphics in asingle file. In the
PDS label, “MYDOC” will be described using a DOCUMENT object for each different file
format provided. The files included in the directory will be:

agrwNE

MYDOC.ASC
MYDOC.DOC
MY DOCO01.TIF
MY DOCO002.TIF
MYDOC.LBL

required ASCII version
optional Microsoft Word version to retain all graphics

optional scanned TIFF version of selected pages

optional scanned TIFF version of other selected pages
PDS label defining DOCUMENT object(s) for these files

Optional versions of the document should have the same file name as the required ASCI | version
but with different extensions. Optional versions should be defined as additional DOCUMENT
objectsin the single PDS label; the name of the required ASCI|I file should be indicated in the

text of the DESCRIPTION keyword.

9.2

Document Format Details

9.2.1 Flat ASCII Text

Line Length and Delimiters - PDS recommends plain text files have line length restricted to 78
characters or fewer, to accommodate printing and display on standard devices. Ea ch line must be
terminated by the two-character carriage-returr/linefeed sequence (ASCII decimal character
codes 13 and 10, respectively).

9-4 Chapter 9. Documents

Page L ength and Breaks - Block paragraph style is preferred, with paragraphs being separated
by at least one blank line. The form feed character (ASCII decimal code 12) may be used to
indicate page breaks, in which case pages should contain no more than 60 lines of text. A
formfeed character should be inserted immediately after the END statement line of an attached
PDS label in thesefiles.

9.2.2 ASCII Text Containing M arkup L anguage

Line Length and Delimiters - The 78-character line length recommendation is dropped for
these files. Notwithstanding, the lines must be delimited by the carriage return/linefeed character
combination.

Page L ength and Breaks - Page breaks are controlled by the markup in these files.
Consequently, there are no specific page length recommendations.

Note: ASCII files containing extensive markup may not pass the “human -readable” test. Also,
some automatic converters producing, for example, HTML files that might be expected to
be human-readable in fact add so many additional marks and notations that those files
also fail the “human-readable” test. Consult a PDS data engineer for help in determining
whether a particular file can be considered *“ human -readable”’ for archive purposes.

9.2.2.1 Hyper-Text Markup Language (HTML) Files

PDS archive products must adhere to Version 3.2 of the HTML language, a standard generalized
markup language (SGML) conforming to the |SO 8879 standard. All files are subject to
validation against the HTML 3.2 SGML Declaration and the HTML Document Type Definition.

Note: Constructs not defined in the HTML 3.2 standard (e.g., FRAME, STYLE, SCRIPT, and
FONT FACE tags) are not alowed in PDS documentation files.

9.2.2.2 Location of Files

PDS strongly recommends that targets of all HTML links be present on the archive volume. In
cases where externa links are provided, the link should lead to supplementary information that is
not essential to understanding or use of the archival data.

PDS recommends that al files comprising an HTML document or series of documents be located
inasingle directory. However, locating ancillary files (e.g., images, common files) in
subdirectories may be required under certain circumstances (e.g., to avoid conflicts in file names
or to minimize replication of common files).

9.2.2.3 Discouraged HTML 3.2 Capabilities
Although the APPLET tag is advertised to be supported by all Java enabled browsers, not all

Chapter 9. Documents 9-5

applets execute on all browsers on all platforms. Further, some browsers require that the user
explicitly enable use of Java applets before the applet will execute. Consequ ently, applets are
permitted in PDS document files only when the information they convey is not essential to
understanding or use of the archival data.

Use of the TAB character is permitted but strongly discouraged because of variations in
implementation among browsers and resulting misalignments within documents.

Use of animated GIF image files is discouraged.

9.2.3 Non-ASCII Formats

Wherever possible the specific encoding and version level information should be included in the
label for al non-ASCII documents. The ENCODING_TY PE keyword is used to indicate the
base encoding type (e.g., PostScript, GIF, etc.), while the specific version information should be
included in the text of the DESCRIPTION keyword. See the PSDD for alist of standard
encoding types. Additional types may be added at the discretion of the PDS data engineer.

9.2.4 Validation

Documentation files prepared to accompany a data set or data set collection must be validated.
Validation consists of checking to ensure that the files can be copied or transmitted
electronically, and can be read or printed by their target text -processing program.
Documentation files should be spell -checked prior to being submitted to PDS for validation.

9.3 Examples

9.3.1 Simple Example of Attached label (Plain ASCII Text)

The following label could be attached to a plain ASCI| text file describing the content and format
of Mars Pathfinder Imager Experiment Data Records.

PDS_VERSI ON_I D = PDS3

RECORD_TYPE = STREAM

OBJECT = TEXT

NOTE = "Mars Pat hfinder |nager Experinent Data Record SIS
PUBLI CATI ON_DATE = 1998- 06- 30

END_OBJECT = TEXT

END

9.3.2 Complex Example of Detached L abel (Two Document Versions)

If the data producer chose to provide the same document in both plain ASCII text and as a
Microsoft Word document, the detached label would have the name EDRSIS.LBL and would be
asfollows:

9-6

PDS_VERSI ON_| D
RECORD TYPE
AASCI | _ DOCUMENT
AWORD_DOCUNENT

OBJECT
DOCUVENT_NAVE
PUBLI CATI ON_DATE
DOCUVENT_TCPI C_TYPE
| NTERCHANGE_FORVAT
DOCUVENT _FORVAT
DESCRI PTI ON

END_CBJECT

OBJECT
DOCUVENT_NAVE
PUBLI CATI ON_DATE
DOCUVENT_TCPI C_TYPE
| NTERCHANGE _FORVAT
DOCUVENT _FORVAT
DESCRI PTI ON

END_CBJECT
END

Chapter 9. Documents

PDS3

UNDEFI NED
"EDRSI S. ASC"
"EDRSI S. DOC!

ASCI | _ DOCUVENT
"Mars Pat hfi nder
1998- 06- 30

" DATA PRODUCT SI S

ASCI |

TEXT

"This docunent contains a textual
the VICAR and PDS fornmatted Mars Pat hfi nder
Experi ment Data Records. This is the ASC I
version of the docunent required by PDS."
ASCI | _ DOCUMENT

| mmger Experinment Data Record"

descri ption of
| MP
t ext

WORD DOCUNENT
"Mars Pat hfi nder
1998- 06- 30

" DATA PRODUCT SI S

Bl NARY

"M CRCSOFT WORD!

"Thi s docunment contains a textual
the VICAR and PDS fornmatted Mars Pat hfi nder
Experi ment Data Records. The docunent was
created using Mcrosoft Wrd 6.0.1 for the
Maci nt osh. "

WORD DOCUNENT

| mmger Experinment Data Record"

description of
| MP

9.3.3 Complex Example of Detached L abel (Documents Plus Graphics)

The following label (EDRSIS.LBL) illustrates the use of an HTML document as the required
ASCII document. The same document is also included as a PDF file, and four PNG images are
included separately.

PDS_VERSI ON_| D
RECORD_TYPE
AHTM._ DOCUMENT
APDF_DOCUMENT
APNG_DOCUMENT

CBJECT
DOCUMENT_NAME

PUBLI CATI ON_DATE

DOCUMENT_TCPI C_TYPE
| NTERCHANGE_FORVAT

DOCUMENT_FORNVAT
DESCRI PTI ON

PDS3

UNDEFI NED

"EDRSI S. HTM'

" EDRSI S. PDF"

("FIGL. PNG', "FI Q. PNG', "TAB1. PNG', "TAB2. PNG')

HTM._ DOCUNMENT
"Mars Pat hfi nder
Recor d"

1998- 06- 30
"DATA PRCODUCT SI S'

ASCl |

HTML

"Thi s docunent contains a description
of the VICAR and PDS formatted Mars

Pat hfi nder | MP Experinent Data Records.
is an HTML version of the docunent.”

| mmger Experinment Data

Thi s

Chapter 9. Documents 9-7

END_OBJECT = HTM__DOCUNMENT
OBJECT = PDF_DOCUMENT
DOCUMENT_NANME = "Mars Pat hfinder |nager Experinent Data
Record"
PUBLI CATI ON_DATE 1998- 06- 30

DOCUVENT _TCPI C_TYPE
ENCODI NG_TYPE

| NTERCHANGE _FORVAT
DOCUVENT_FORVAT
DESCRI PTI ON

END_CBJECT

CBJECT

DOCUMENT_NAME

PUBLI CATI ON_DATE
DOCUVENT_TCPI C_TYPE
FI LES

ENCODI NG_TYPE

| NTERCHANGE _FORVAT
DOCUVENT_FORVAT
DESCRI PTI ON

END_CBJECT

END

" DATA PRODUCT SI S'

" PDS- ADOBE- 1. 1"

Bl NARY

" ADCBE PDF"

"Thi s docunent contains a description
of the VICAR and PDS formatted Mars
Pat hfi nder | MP Experinent Data Records.
is a PDF version of the docunent.™
PDF_DOCUMENT

Thi s

PNG_DOCUMENT
"Mars Pat hfi nder
Record"

1998- 06- 30

" DATA PRODUCT SI S'

4

" PNGL. 0"

Bl NARY

PNG

"This docunment is a PNG representation of two
figures and two tables fromthe Mars

Pat hfi nder | MP Experinent Data Record SIS "
PNG_DOCUMENT

| mmger Experinment Data

9-8

AAREADME.TXT, 9-2
ASCII files
containing markup, 9 -4
format, 9-3
DOCINFO.TXT, 9-2
DOCUMENT, 9-2
DOCUMENT objects 9-2
documentation, 9-1
ASCII file format, 9-3
criteriafor incluson, 9 -1
example
attached TEXT, 9-5
detached, 9-5
with graphics, 9-6
format, 9-1
HTML, 9-1, 9-4
labels for, 9-2
markup files, 9-4
non-ASCI| files, 9-5
required ASCII format, 9-1
TeX/LaTeX, 9-1
validation, 9-5
ENCODING_TYPE, 9-5
extensions
table of, 9-3
TEXT, 9-2
TEXT objects 9-2

Chapter 9. Documents

Chapter 10. File Specification and Naming 10-1

Chapter 10. File Specification and Naming

The File Specification and Naming standard defines the PDS conventions for forming file
specifications and names. This chapter is based on levels 1 and 2 of the international standard
SO 9660, “Information Processing - Volume and File Structure of CD-ROM for Information
Interchange.”

| SO 9660 Level 1 versus|SO 9660 Level 2

PDS recommends that archive products adhere to the 1ISO 9660 Level 1 specification.
Specifically, CD-ROM volumes that are expected to be widely distributed should use file
identifiers consisting of a maximum of eight characters in the base name and three charactersin
the extension (i.e., “8.3” file names).

When there are compelling reasons to relax the 8.3 file name standard, the ISO 9660 Level 2

specification with respect to file names only may be used, subject to the restrictions listed in
Section 10.1.2.

10.1 File Specification Standards

A file specification consists of the following elements:
1. A complete directory path name (as discussed in the Directory Types and Naming chapter
of this document)
2. A file name (including extension)
The PDS has adopted the UNIX/POSIX forward slash character (/) as the directory separator for
use in path names. Directory path name formation is discussed further in the Directory Types
and Naming chapter of this document.

Thefollowing is an example of asimple file specification. The file specification identifies the
location of thefilerelative to the root of avolume, including the directory path name.

File Name: TG15N122.IMG
File Specification: TGI5NXXX/TG15NIXX/TG15N12X/TG15N122.IMG
Do not use path or file names that correspond to operating system specific names, such as:

AUX COM1 CON LPT1 NUL PRN

10-2 Chapter 10. File Specification and Naming

10.1.1 1SO 9660 Level 1 Specification

A file name consists of a base name and an extension, separated by afull stop character (“.”).
Under 1SO 9660 Level 1, the length of the base name may not exceed eight characters and the
extension may not exceed three characters. In addition, aversion number consisting of a
semicolon and an integer must follow the file identifier. The base name and extension may only
contain characters from the following set: the upper case alphanumeric characters (A- Z, 0-9)
and the underscore (“_"). Collectively, these requirements are often referred to asthe “8.3” (“8
dot 3”) file naming convention. These limitations exist primarily to accommodate ol der
computer systems that cannot handle longer file names. Since PDS archive volumes are designed

to be read on many platforms, including PCs, these restrictions are necessary.
Preferred format: BASENAME (1..8 characters) "." EXTENSION (3 characters)
Allowableformat: BASENAME (1..8 characters) "." EXTENSION (1..3 characters)

Actual format
on archive medium: BASENAME (1..8 characters) "." EXTENSION (1..3 characters) ";1"

10.1.2 1SO 9660 Level 2 Specification

The PDS use of 1SO 9660 Level 2 file and directory names adheresto all the above restrictions,
with one exception: the base name may be up to 27 characters long (total file and directory name
length not to exceed 31 characters). Thus, thisformat is sometimes referred to asthe “27.3”
format.

Note: In rare cases the following variations are allowed on the 27.3 format file name:

» Thefile name portion may be up to 29 characterslong; or
» Theextension may be up to 29 characters long.

In no case, however, may the total file name length, including the “.”, exceed 31 characters.
Preferred format: BASENAME (1..27 characters) "." EXTENSION (3 characters)
Allowable format: BASENAME (1..29 characters) "." EXTENSION (1..29 characters)

Actual format
on archive medium: BASENAME (1..29 characters) "." EXTENSION (1..29 characters) ";1"

Note that only the file name specification for Level 2 may be used in PDS archive volumes. Al
other Level 2 extensions are prohibited.

Chapter 10. File Specification and Naming 10-3

10.2 Reserved Directory Names, File Names and Extensions

A number of file names, directory names and file extensions are reserved for filesthat are
required in PDS archive volumes under various circumstances. These reserved names and
extensions are listed in the following sections for easy reference. For details concerning what
directories and files are required where and when, see the indicated chapter.

10.2.1 Reserved Directory Names

The following directory names are reserved. The contents of these directories are described in
Chapter 19, Volume Organization and Naming.

BROWSE
CALIB
CATALOG
DATA
DOCUMENT
EXTRAS
GAZETTER
GEOMETRY
INDEX
LABEL
SOFTWARE

10.2.2 Reserved File Names

The following file names are reserved. Not all of them are required in all cases. For a complete
description of what files are required where and when, see Chapter 19, Volume Organization and
Naming.

AAREADME.TXT GAZINFO.TXT PERSON.CAT
BROWINFO.TXT GEOMINFO.TXT REF.CAT
CALINFO.TXT INDEX.TAB SGIINFO.TXT
CATALOG.CAT INDXINFO.TXT SOFTINFO.TXT
CATINFO.TXT INST.CAT SUNINFO.TXT
CUMINDEX.TAB INSTHOST.CAT VOLDESC.CAT
DATASET.CAT LABINFO.TXT VOLDESC.SFD
DOCINFO.TXT MACINFO.TXT VOLINFO.TXT
ERRATA.TXT MISSION.CAT ZIPINFO.TXT
EXTRINFO.TXT PCINFO.TXT

10.2.3 Reserved Extensions

The following file extensions are reserved. A brief description is provided in the table below.
Additional detail is contained in Chapter 19, Volume Organization and Naming, and Chapter 9,
Documentation Standard.

104 Chapter 10. File Specification and Naming

Extension Description
(use with files of this type)

ASC Plain ASCII documentation files

BC SPICE Binary format CK (pointing) files

BSP SPICE Binary format SPK (ephemeris) files
CAT Catal og object(s)
DAT Binary files (other than images)

DLL Dynamic Link Library
DOC Microsoft Word document

EPS Encapsulated Postscript

EXE Application or Executable
FMT Include file for describing data object (meta data)
GIF GIF image

HTM or HTML | HTML document

IBG Browse image data

IMG Image data

IMQ Image data that have been compressed

JPG JPEG image

LBL Detached label for describing data object

LIB Library of object files
MAK Makefile for compiling / linking application or executable
OBJ Object file

PDF Adobe PDF document

PNG Portable Network Graphics

PS Postscript
QUB Spectral (or other) image QUBES

RTF Rich Text document

TAB Tabular data, including ASCII TABLE objects with

detached labels
TEX TeX or LaTeX document
TI SPICE Text IK (instrument parameters) files
TIF or TIFF | Tagged Image File Format documents

TLS SPICE Leap seconds kernel files

TPC SPICE Physical and cartographic constants kernel files
TSC SPICE Spacecraft clock coefficients kernel files
TXT Plain text documentation files

XC SPICE Transfer format CK (pointing) files
XES SPICE E-kernel files

XSP SPICE Transfer format SPK (ephemeris) files
ZIP Zip-compressed files within PDS

Table 10.1 — Reserved File Extensions

Chapter 10. File Specification and Naming 10-5

10.3 Guiddinesfor Naming Sequential Files
In cases where file names are constructed from atime tag or sequential data object identifier, the
following forms are suggested (but not required):

Pnnnnnnn.EXT

where “.EXT” isthe file extension (see above) and P is a character indicating:

nnnnnnn is aclock count value (e.g., “C3345678.IMG")

nnnnnnn is atime value (e.g., “T870315.TAB")

nnnnnnn isaframe ID or animage ID (e.g., “F242A03.IMG”)
nnnnnnn is a numeric file identification number (e.g., “NO03.TAB")

Z2T-=H0

10-6

directories
reserved names, 10-3
file extensions
reserved extensions, 10-3
file names, 10-1
27.3 convention, 10-2
8.3 convention, 10-2
SO 9660 Level 1, 10-2
SO 9660 Level 2, 10-2
reserved extensions, 10-3
reserved names, 10-3
sequential file names, 10-5
syntax, 10-2
file specification
definition, 10-1
example, 10-1
SO 9660
Leve 1 file names, 10-2
Level 2 file names, 10-2

Chapter 10. File Specification and Naming

Chapter 11. Media Formeats for Data Submission and Archiv e 11-1

Chapter 11. Media Formats for Data
Submission and Archive

This standard identifies the physical media formats to be used for data submission or delivery to
the PDS or its science nodes. The PDS expects flight projects to deliver all archive products on
magnetic or optical media. Electronic delivery of modest volumes of specia science data
products may be negotiated with the science nodes.

Archive Planning - During archive planning, the data producer and PDS will determine the
medium (or media) to use for data submission and archiving. This standard lists the media that

are most commonly used for submitting data to and subsequently archiving data with the PDS.
Delivery of data on media other than those listed here may be negotiated with the PDS on a case -
by-case basis.

Physical Media for Archive- For archival products only mediathat conform to the appropriate
International Standards Organization (1SO) standard for physical and logical recording formats
may be used.

1. The preferred data delivery medium is the Compact Disk (CD -ROM or CD-Recordable)
produced in SO 9660 format, using Interchange L evel 1, subject to the restrictions listed
in Section 10.1.1.

2. Compact Disks may be produced in SO 9660 format using Interchange Level 2, subject
to the restrictions listed in Section 10.1.2.

3. Digital Versatile Disk (DVD -ROM or DVD-R) should be produced in UDF-Bridge
format (Universal Disc Format) with 1SO 9660 Level 1 or Level 2 compatibility.

Because of hardware compatibility and long -term stability issues, the use of 12-inch Write Once
Read Many (WORM) disk, 8-mm Exabyte tape, 4-mm DAT tape, Bernoulli Disks, Zip disks,
Syquest disks and Jaz disks is not recommended for archival use. WORM disk formats are
proprietary to the specific vender hardware. Helical scan tape (8 -mm or 4-mm) is prone to
catastrophic read errors. Bernoulli, Zip, Jaz, Syquest and other vendor -specific storage media
are prone to obsolescence.

11.1 CD-ROM Recommendations

11.1.1 Useof Variant Formats

The use of Extended Attribute Records (XARS), Rock Ridge Extensions or Macintosh Hybrid
Disk Extensions on archival CD -ROMs is discouraged because these extensions can cause errors
with CD-ROM drivers on some systems.

11-2 Chapter 11. Media Formats for Data Submission and Archive

11.1.2 Premastering Recommendation

PDS recommends that CD-ROMSs be premastered using a single -session, single-track format.
Other formats have been found to be incompatible with some readers.

11.2 DVD Recommendations

11.2.1 Useof Variant Formats

The official volume structure for DVD mediais UDF. DVD volumes should not be produced
using 1SO 9660 only. While current operating systems support 1SO 9660 on DV D volumes, there
IS no guarantee that future operating system upgrades, set-top boxes or other new devices will
continue to support 1 SO 9660 formatted DVD volumes.

11.2.2 Premastering Recommendation

PDS recommends that DVD-ROMs or DV D-Rs be premastered using a single -session, single-
track format using the UDF-Bridge format.

11.2.3 Recommended DVD Formats
There are currently three "variants' of DVD media :

?? DVD-5 - dingle sided, single layer (4.7 GB)
?? DVD-9 - single sided, double layer (8.5 GB)
?? DVD-10 - double sided, single layer (9.4 GB)

Currently, only the DVD -5 is approved by the PDS for archiving data. A waiver may be
obtained for using the DVD -9 format if the archive consists of very large quantities of data (e.g.,
cost considerations may warrant us ng this format). The DVD -10 format is not recommended.

11.3 Packaging Software Fileson a CD or DVD

The 1SO 9660 Level 1 standard requires all pathnames and directory names to be in uppercase,
and to be limited to eight characters with athree -character file extension for file names. 1n some
cases it may be desirable to include software packages on an SO 9660 Level 1 archive product
that do not conform to these naming standards. The recommended method for packaging
softwareisto use a“Zip” utility in accordance with the PDS standards for archiving data using
Zip compression. See the Zip Compression chapter for more information.

11.4 Software Packaging Under Previous Versions of the Standard

Under previous versions of the Standards — prior to the adoption of the Zip standard (see the Zip
Compression chapter) — archive products that included software specifically intended for the

Chapter 11. Media Formeats for Data Submission and Archiv e 11-3

Mac and SUN operating systems used the following conventions:
1. Mac Software

In this case the Mac files must be prepared in a particular format, as other platforms do
not recognize the resource and data fork files that come with Mac applications. (For an
example of properly formatted Mac software, see the NIHIMAGE software on the
Magellan GxDR and Clementine EDR CD -ROMs.) The Mac utility “STUFFIT” is used
to prepare the files by compressing them and encoding them using the BINHEX utility .
Users will aso need this STUFFIT utility in order to unpack the software for use. The
procedure and software requirements should be described in atext file included on the
CD-ROM (in the appropriate SOFTWARE/DOCUMENT subdirectory — see the Volume
Organization and Naming chapter in this document).

Example — Text Documenting HQX Files

Maci nt osh Sof t war e

This directory contains software that can be used to display the GXDR
i mages on a Macintosh Il conmputer with an 8-bit color display.

NOTE: Because of the way this CD-ROM was produced, it was not possible
to record this display programas a Macintosh executable file. Anyone
who is unfanmiliar with the Maci ntosh STUFFIT utility should contact the
PDS operator, 818-306-6026, SPAN address JPLPDS: : PDS_OPERATOR, | NTERNET
addr ess PDS_COPERATCR@PLPDS. JPL. NASA. GOV

The file I MAGE. HQX contains the NIH I nage program along wth several
ancillary files and docunentation in Mcrosoft WORD format. It was
witten by Wayne Rasband of the National Institutes of Health. The
program can be used to display any of the image files on the GXDR
CD- ROM di sks.

The |1 nage executabl e and manual are stored in BINHEX format, and the
utility STUFFIT or UNSTUFFIT nust be used to: 1) decode the BI NHEX
file IMAGE. HQX into | MAGE. SIT, using the ' DECODE BINHEX FILE..."' option
in the Gher menu; and 2) use 'OPEN ARCHI VE' fromthe File nmenu to
extract Inage 1.40 fromthe STUFFIT archive file. There are also
several other files in the archive file which should be unstuffed and
kept together in the same folder as the Inage executable is stored.

The STUFFIT software is distributed as shareware. STUFFIT, Version
1.5.1, is available by contacting:

Raynond Lau MacNET: RayLau Usenet : rayl au@asysl1. UUCP
100-04 70 Ave. GEni e: RayLau

Forest Hlls, NY. 11375-5133 Cl S: 76174, 2617

United States of Anerica. Del phi : RaynondLau

Alternatively, STUFFIT CLASSIC, Version 1.6, is available by contacting:

Al addi n Systens, Inc.
Deer Park Center

Suite 23A-171

Apt os, CA 95003

United States of Anerica

11-4 Chapter 11. Media Formats for Data Submission and Archive

2. SUN Software

The problem in this case is preserving the SUN file names, since case is significant in file
names on that platform. Since the | SO standard requires al file and directory namesto be
uppercase, adisk premastered as an 1SO CD may encounter problemsin the case -
sensitive SUN environment. Specifically, some CD readers mounted on SUN systems
show file names as uppercase regardless of the format prior to mastering. If build routines
(* make’ files, for example) refer to lowercase file names, the corresponding files will not
be found.

A method for dealing with this Situation isto store the entire original directory structure
and contents in a compressed, encoded archive (a compressed “tar ” file, for example),
and document the procedures and utilities needed to restore the filesin the ap propriate
file. Thisis equivalent to the STUFFIT approach described above for Mac software.

Chapter 11. Media Formats for Data Submission and Archiv e 11-5

B I

Bernoulli Disks

ElIVENY MEOIUM ... et et e bt e et e e st e e e anbe e e e nnneeeneeas 11-1
BINHEX ULHIEY ..ttt e et sne e e et e st e sneeebeesneeenns 11-3
uél#

CD-Recordable
ElIVENY MEOIUM ... ettt et e e st e e e snbe e e e nneeesneeas 11-1
CD-ROM
ElIVENY MEOIUM ... ettt e et e st e e st e e snbe e e e nnteeeneeas 11-1
formatting reCOMMENUELIONSccviiiiiieiiie e sn e nneeas 11-2
(ST 007 S 1 1] o USRS 11-2
{%
DAT tape
ElIVENY MEOIUM ... e e e et e bt e e b e e et e e snbe e e e nnneeeneeas 11-1
data delivery
0070 = USROS 11-1
Ot SUDIMISSION ...t ettt b e e e st e e ssb e e e sse e e e be e e snbee e eanteeennneesnneeans 11-1
(01 LAY Y0 1< o = RO 11-1
DVD media
= o 01NV (0] 07 USRS UPRPRRI 11-2
DVD-R
ElIVENY MEOIUM ... ettt e et e e st e e e anbe e e e nnreeeneeas 11-1
DVD-ROM
ElIVENY MEOIUM ... ettt e et e e st e e e anbe e e e nnreeeneeas 11-1
formatting reCOMMENABLIONScoviiiiiie et e be e sre e e sneeas 11-2
(ST 007% S (= 1] o USRS 11-2
0TSSR 11-2
{%
Exabyte tape
ElIVENY MEOIUM ... e e et et e e st e e e anbe e e e nnreeeneeas 11-1
Extended Attribute Records (XARS)
ON AEIIVENY TISKS ..ottt sttt sttt e e s st e e sae e e e se e e snte e e anbe e e eneeeeneeas 11-2
uél#
Jaz disks

ElIVENY MEOIUM ... e et e b e e st e e e anbe e e e nneeeneeas 11-1

11-2 Chapter 11. Media Formats for Data Submission and Archive

Y -

PhySICal MEIATOIMALSoiiiiiiiie e ettt e et e e e be e e sbe e e e e nnneeens 11-1
uélé
software
PACKAGING FOr AEIIVENY ... snnea e 11-3
STURFIT ULHITY 1ottt sttt sttt et esaeeenseesbeeente e sneeenseesneeeseenns 11-3
Syquest disks
ElIVENY MEOIUM ... ettt st e e st e e e anbe e e e nneeeeneeas 11-1
%
L= S0 111§/ 11-4
%
WORM disk
ElIVENY MEOIUM ... et et e bt e et e e st e e e anbe e e e nnneeeneeas 11-1
ll%l#
Zip disks

ElIVENY MEOIUM ... et et e bt e et e e st e e e anbe e e e nnneeeneeas 11-1

Chapter 12. Object Description Language Specification and Usage 12-1

Chapter 12. Object Description Language
Specification and Usage

The following provides a complete specification for Object Description Language (ODL), the
language used to encode data labels for the Planetary Data System (PDS) and other NASA data
systems. This standard contains aformal definition of the grammar semantics of the language.
PDS specific implementation notes and standards are referenced in separate sections.

12.1 About the ODL Specification

This standard describes Version 2.1 of ODL. Version 2.1 of ODL supersedes Versions 0 and 1 of
the language, which were used previously by the PDS and other groups. For the most part, ODL
Version 2.1 is backwardly compatible with previous versions of ODL. There are, however, some
features found in ODL Versions 0 and 1 that have been removed from or changed within Version
2. The differences between ODL versions are described in Section 12.7.

Following is asample ODL datalabel describing afile and its contents:

/* File Format and Length */

RECORD_TYPE = FI XED_LENGTH
RECCORD_BYTES = 800
FI LE_RECORDS = 860
/* Pointer to First Record of Major Objects in File */
N VAGE = 40
Al MAGE_HI STOGRAM = 840
ANANCI LLARY_TABLE = 842
/* I mage Description */
SPACECRAFT_NANME VOYAGER 2
TARGET_NAME 10
I MAGE I D "0514J2- 00"
I MAGE_TI ME 1979-07-08T05: 19: 117

I NSTRUMVENT_NAME
EXPOSURE_DURATI ON
NOTE

NARROW ANGLE_CANERA

1.9200 <SECONDS>

"Routine multispectral |ongitude
coverage, 1 of 7 franes"

/* Description of the Cbjects Contained in the File */

OBJECT = | MAGE
LI NES = 800

LI NE_SAMPLES = 800

SAMPLE_TYPE = UNSI GNED_| NTEGER
SAMPLE_BI TS =8

END_OBJECT = | MAGE

OBJECT = | MAGE_H STOGRAM
| TEMS = 25

| TEM TYPE = | NTEGER

| TEM BI TS = 32

END_OBJECT = | MAGE_H STOGRAM
OBJECT = ANCI LLARY_TABLE
ASTRUCTURE = "TABLE. FMI"
END_OBJECT = ANCI LLARY_TABLE

END

12-2 Chapter 12. Object Description Language Specification and Usage

12.1.1 Implementing ODL

Notes to implementers of software to read and write ODL-encoded data descriptions appear
throughout the following sections. These notes deal with issues beyond language syntax and
semantics, but are addressed to assure that software for reading and writing ODL will be
uniform. The PDS, which isthe major user of ODL-encoded data labels, has imposed additional
implementation requirements for software used within the PDS. These PDS requirements are
discussed below where appropriate.

12.1.1.1 Language Subsets

Implementers are allowed to develop software to read or write subsets of the ODL. Specifically,
software developers may opt to:

 Eliminate support for the GROUP statement (see Section 12.4.5.2 for additional
information)

- Not support pointer statements

« Not support certain types of data values

For every syntactic element supported by an implementation, the corresponding semantics, as
spelled out in this chapter, must be fully supported. Software devel opers should be careful to
assure that language features will not be needed for their particular applications before
eliminating them. Documentation on label reading/writing software should clearly indicate
whether or not the software supports the entire ODL specification and, if not, should clearly
indicate the features not supported.

12.1.1.2 Language Super sets

Software for writing ODL must not provide or allow lexical or syntactic elements over and
above those described below. With the exception of the PV L-specific extensions below, software
for reading ODL must not provide or alow any extensions to the language.

12.1.1.3 PDSImplementation of PVL-Specific Extensions

PDS implementation of software for reading ODL may, in some cases, provide handling of
lexical elements that are included in the CCSDS specification of the Parameter Value Language
(PVL), which isasuperset of ODL. Extensions handled by such software include:

» BEGIN_OBJECT asasynonym for the reserved word OBJECT
* BEGIN_GROUP as asynonym for the reserved word GROUP
» Useof the semicolon (;) as a statement terminator

These lexical elements are not supported by software that writes the ODL subset. They must
either be removed (in the case of semicolons) or replaced (in the case of the BEGIN_OBJECT
and BEGIN_GROUP synonyms) upon outpui.

Chapter 12. Object Description Language Specification and Usage 12-3

12.1.2 Notation
The formal description of the ODL grammar is given below in Backus-Naur Form (BNF).
Language elements are defined using rules of the following form:

defined_element ::= definition

where the definition is composed from the following components:

1. Lower case words, some containing underscores, are used to denote syntactic
categories. For example:

units_expression

Whenever the name of a syntactic category is used outside of the formal BNF
specification, spaces take the place of underscores (for example, units expression).

2. Boldfacetypeis used to denote reserved identifiers. For example:
obj ect
Special characters used as syntactic elements also appear in boldface type.

3. Square brackets enclose optional elements. Elements within brackets occur zero or
one times.

4. Square brackets followed immediately by an asterisk or plus sign specify repeated
elements. In the case of an asterisk, the elementsin brackets may appear zero, one, or
more times. In the case of a plus sign, the elements in brackets must appear at |east
once. The repetitions occur from left to right.

5. A vertical bar separates alternative el ements.

6. If the name of any syntactic category starts with an italicized part, it is equivalent to
the category name without the italicized part. The italicized part is intended to convey
some semantic information. For example, both object_identifier and units_identifier
are equivaent to identifier; object_identifier is used in places where the name of an
object isrequired and units_identifier is used where the name of some unit of
measurement is expected.

12.2 Character Set

The character set of ODL isthe International Standards Organization’s ISO 646 character set.
The U.S. version of the 1SO 646 character set is ASCII; the ASCII graphical symbols are used
throughout this document. In other countries certain symbols have a different graphical
representation.

12-4 Chapter 12. Object Description Language Specification and Usage

The ODL character set is partitioned into letters, digits, special characters, spacing characters,
format effectors and other characters:

character :: = letter | digit | specia_character |
spacing_character | format_effector |
other_character

12.2.1 ODL Character Set - Letters

The letters are the uppercase letters A - Z and the lowercase letters a- z. ODL language elements
are not case sensitive. Thus the following identifiers are equivalent:

« IMAGE_NUMBER
* Image_Number
* image_number

Caseissignificant inside of literal text strings, i.e., string “abc” is not the same as the string
HABCH .

12.2.2 ODL Character Set - Digits
Thedigitsare0, 1, 2, 3,4,5,6, 7, 8, 9.

12.2.3 ODL Character Set — Special Characters
The special charactersused in ODL are:

Symboal Name Usage
= Equals The equal's sign equates an attribute or pointer to a value.
{} Braces Braces enclose an unordered set of values.
O Parentheses Parentheses enclose an ordered sequence of values.
+ Plus The plus sign indicates a positive numeric value.
- Minus The minus sign indicates a negative numeric value.
<> Angle brackets Angle brackets enclose a units expression associated with a

numeric value.
Period The period is the decimal place in real numbers.

" Quotation Marks Quotation marks denote the beginning and end of atext string
value. Case is significant within the quotes of atext string.

’ Apostrophe Apostrophes mark the beginning and end of a symbol value.
Case is not significant within delimiting apostrophes (a.k.a.
“single quotes”).

Chapter 12. Object Description Language Specification and Usage 12-5

_ Underscore The underscore separates words within an identifier.
: Comma The comma separates individual valuesin a set or sequence.
/ Slant The dlant character indicates division in units expressions. The

slant is also part of the comment delimiter.

* Asterisk The asterisk indicates multiplication in units expressions. Two
asterisksin arow indicate exponentiation in units expressions.
The asterisk is also part of the comment delimiter.

Colon The colon separates hours, minutes and seconds within atime
value.

Crosshatch Also known as “the pound sign”, this symbol delimits the
digitsin an integer number value expressed in notation other
than base-10.

& Ampersand The ampersand denotes continuation of a statement onto
another line.

A Circumflex The circumflex (or caret) indicates that avalue isto be

interpreted as a pointer.

12.2.4 ODL Character Set — Spacing Characters

Two characters, called the spacing characters, separate lexical elements of the language and can
be used to format characters on aline:

Space
Horizontal Tabulation

12.2.5 ODL Character Set —Format Effectors

The following 1SO characters are format effectors, used to separate ODL encoded statements
into lines:

Carriage Return
Line Feed

Form Feed
Vertical Tabulation

The spacing characters and format effectors are discussed further in section 12.4.1 below. There
are other charactersin the ISO 646 character set that are not required to write ODL statements
and labels. These characters may, however, appear within text strings and quoted symbolic
literals:

1$%;?2@[]"°|”

12-6 Chapter 12. Object Description Language Specification and Usage

12.2.6 ODL Character Set — Control Characters

The category of other characters also includes the ASCII control characters except for horizontal
tabulation, carriage return, line feed, form feed and vertical tabulation (e.g., the control
characters that serve as spacing characters or format effectors). Aswith the printing charactersin
this category, the control charactersin this category can appear within atext string. The handling
of control characters within text strings and symbolic literalsis discussed in Section 12.3.3
below.

12.3 Lexical Elements

This section describes the lexical elements of ODL. Lexical elements are the basic building
blocks of the ODL. Statements in the language are composed by stringing lexical elements
together according to the grammatical rules presented in Section 12.4. The lexical elements of
ODL are:

* Numbers
 Datesand Times
e Strings

e ldentifiers
» Specia symbols used for operators, etc.

There is no inherent limit on the length of any lexical element. However, software for reading
and writing ODL may impose limitations on the length of text strings, symbol strings and
identifiers. It is recommended that at least 32 characters be allowed for symbol strings and
identifiers and at least 400 characters for text strings.

12.3.1 Numbers

ODL can represent both integer numbers and real numbers. Integer numbers are usually
represented in decimal notation (“123"), but ODL also provides for integer valuesin other
number bases (for example, “2#1111011#” isthe binary representation of the decimal integer
“123"). Real numbers can be represented in simple decimal notation (“123.4”) or in scientific
notation (i.e., with abase 10 exponent: “1.234E2").

12.3.1.1 Integer NumbersIn Decimal Notation

An integer number in decimal notation consists of astring of digits optionally preceded by a
number sign. A number without an explicit sign is aways taken as positive.

integer :: = [Sign] unsigned_integer
unsigned integer :: = [digit] +
sign:= +|-

Chapter 12. Object Description Language Specification and Usage 12-7

Examples— Decimal Integers

0

123
+440
-150000

12.3.1.2 Integer Numbers|n Based Notation

An integer number in based notation specifies the number base explicitly. The number base must
be in the range 2 to 16, which allows for representations in the most popular number bases,
including binary (base 2), octal (base 8) and hexadecimal (base 16). In general, for a number
base X the digits 0 to X-1 are used. For example, in octal (base 8) the digits 0 to 7 are allowed. If
X is greater than 10, then the letters A, B, C, D, E, F (or their lower case counterparts) are used
as needed for the additional digits.

A based integer may optionally include a number sign. A number without an explicit signis
always taken as positive.

based integer :: = radix # [sign] [extended_digit] + #
extended digit :: = digit | letter
radix :: = unsigned_integer

Examples— Based Integers

2#1001011#
8H#113#
10#75#
16#4B#

16#+4B#
16#-4B#

All but the last example above are equivalent to the decimal integer number 75. The final
example is the hexadecimal representation of -75 decimal.

12.3.1.3 Real Numbers

Real numbers may be represented in floating-point notation (“123.4") or in scientific notation
with abase 10 exponent (“1.234E2"). A real number may optionally include a sign. Unsigned
numbers are always taken as positive.

real :: =[sign] unscaled_real |[sign] scaled real

unscaled real :: = unsigned_integer. [unsigned_integer] | .unsigned_integer
scaled real :: = unscaled_real exponent

exponent :: = E integer | e integer

12-8 Chapter 12. Object Description Language Specification and Usage

Note that the letter ‘E’ in the exponent of areal number may appear in either upper or lower
case.

Examples— Real Numbers

0.0
123.
+1234.56
-.9981
-1.E-3
314591

12.3.2 Datesand Times

ODL includes lexical elements for representing dates and times. The formats for dates and times
are a subset of the formats defined by the International Standards Organization draft standard
ISO/DIS 8601. (For information regarding PDS specific use of dates and times, see the
Date/Time chapter in this document.)

12.3.2.1 Dateand Time Values

Date and time scalar values represent a date, atime, or a combination of date and time:

date time value:: = date | time | date_time

The following rules apply to date values:

* Theyear must be Anno Domini. PDSrequires a4-digit year format be used (i.e.,
“2000", not “00").

* Month must be anumber between 1 and 12.

» Day of month must be a number in the range 1 to 31, as appropriate for the particul ar
month and year.

» Day of year must bein therange 1 to 365, or 366 in aleap year.

The following rules apply to time values:

* Hoursmust bein therange 0 to 23.
* Minutes must be in the range O to 59.
» Seconds, if specified, must be greater than or equal to 0 and less than 60.

The following rules apply to zone offsets within zoned time values:

* Hoursmust beintherange-12 to + 12 (the sign is mandatory).
* Minutes, if specified, must be in the range 0 to 59.

Chapter 12. Object Description Language Specification and Usage 12-9

12.3.2.2 Implementation of Datesand Times

All ODL reading/writing software shall be able to handle any date within the 20th and 21st
centuries. Software for writing ODL must always output full four-digit year numbers so that
labels will be valid across century boundaries.

Timesin ODL may be specified with unlimited precision, but the actual precision with which
times will be handled by label reading/writing software is determined by the software
implementers, based upon limitations of the hardware on which the software is implemented.
Developers of label reading/writing software should document the precision to which times can
be represented.

Software for writing ODL must not output local time values, since alabel may beread in atime
zone other than where it was written. Use either the UTC or zoned time format instead.

12.3.2.3 PDSImplementation of Dates and Times

PDS software for reading ODL labels interprets label times as UTC times. On output, a“Z” will
be appended to label times.

12.3.2.4 Dates

Dates can be represented in two formats: as year and day of year; or as year, month and day of
month.

date :: =year_doy |year_month_day
year_doy .. = year-doy

year_month_day :: = year-month-day

year ;> = unsigned_integer

month . = unsigned_integer

day :: = unsigned_integer

doy ;= unsigned_integer

Examples — Dates

1990-07-04
1990-158
2001-001

12.3.25 Times

Times are represented as hours, minutes and (optionally) seconds using a 24-hour clock. Times
may be specified in Universal Time Coordinated (UTC) by following the time with the letter Z
(for Zulu, acommon designator for Greenwich Mean Time). Alternately, the time may be
referenced to any time zone by following the time with a number that specifies the offset from
UTC. Most time zones are an integral number of hours from Greenwich, but some are different
by some non-integral time; both can be represented in the ODL. A time that is not followed by

12-10 Chapter 12. Object Description Language Specification and Usage

ether the Zulu indicator or atime zone offset is assumed to be alocal time.

time . =loca_time | utc_time| zoned_time
local time . =hour_min_sec

utc_time > =hour_min_secZ

zoned time ::=hour_min_sec zone offset
hour_min_sec :: = hour: minute [:second)]

zone offset :: =sign hour [: minute]

hour ;. =unsigned_integer

minute . = unsigned_integer

second . =unsigned_integer | unscaled_real

Note that either an integral or afractional number of seconds can be specified in atime value.

Examples — Times

12:00
15:24:127
01:10:39.4575+07 (time offset of 7 hoursfrom UTC)

12.3.2.5.1 Combining Date and Time

A date and time can be specified together using the format below. Either of the two date formats
can be combined with any time format - UTC, zoned or local.

date time:=date T time

Theletter T separating the date from the time may be specified in either upper or lower case.
Note that, because thisis alexical element, spaces may not appear within a date, within atime or
before or after the letter T.

Examples — Date/Times
1990-07-04T12:00

1990-158T15:24:127
2001-001T01:10:39.457591+7

12.3.3 Strings
There are two kinds of string elementsin ODL.: text strings and symbol strings.

12.3.3.1 Text Strings
Text strings are used to hold arbitrary strings of characters.

Chapter 12. Object Description Language Specification and Usage 12-11

guoted_text ::= "[character]*"
The empty string — a quoted text string with no characters within the delimiters — is allowed.

A guoted text string may not contain the quotation mark, which is reserved to be the text string
delimiter. A quoted text string may contain format effectors, hence it may span multiple linesin
alabel: thelexical element begins with the opening quotation mark and extends to the closing
guotation mark, even if the closing mark ison afollowing line. The rulesfor interpreting the
characters within atext string, including format effectors, are given in the subsection on string
valuesin Section 12.5.3.

12.3.3.2 Symbol Strings

Symbol strings are sequences of characters used to represent symbolic values. For example, an
image ID may be asymbol string like *J123-U2A’, or a camera filter might be a symbol string
like ' UV1'.

quoted_symbol ::= ‘[character]+’
A symbol string may not contain any of the following characters:

* The apostrophe, which is reserved to be the symbol string delimiter
» Format effectors, which means that a symbol string must fit on asingleline
» Control characters

12.3.4 ldentifiers

Identifiers are used as the names of objects, attributes and units of measurement. They can also
appear as the value of asymbolic literal.

Identifiers are composed of letters, digits, and underscores. Underscores are used to separate
words in an identifier. Thefirst character of an identifier must be aletter. The last character
may not be an underscore.

identifier : : = letter [letter | digit | _letter | _digit]*

Because ODL is not case sensitive, lower case charactersin an identifier can be converted to
their upper case equivalent upon input to simplify comparisons and parsing.

Examples — Identifiers

VOYAGER

VOYAGER 2

BLUE_FILTER
USA_NASA_PDS 1 0007
SHOT_1_RANGE_TO_SURFACE

12-12 Chapter 12. Object Description Language Specification and Usage

12.3.4.1 Reserved |dentifiers

A few identifiers have special significance in ODL statements and are therefore reserved. They
cannot be used for any other purpose (specifically, they may not be used to name objects or
attributes):

end end_group end_object
group object begin_object

12.3.5 Special Characters

ODL isasimplelanguage and it is usually clear where one lexical element ends and another
begins. Spacing characters or format effectors may appear before alexical element, between any
pair of lexical elements, or after alexical element without changing the meaning of a statement.

Some lexical elementsincorporate special characters (e.g., the decimal point in real numbers or
the quotation marks that delimit atext string). Some special characters are also lexical elements
in their own right. These are:

= The equals sign is the assignment operator.

The comma separates the elements of an array or a set.

* The asterisk serves as the multiplication operator in units expressions.
/ The slant serves as the division operator within units expressions.

A The circumflex denotes a pointer to an object.

<> Theangle brackets enclose units expressions.

0 The parentheses enclose the elements of a sequence.

{} Thebraces enclose the e ements of a set.

The following two-character sequence isalso alexical element.

** Two adjacent asterisks are the exponentiation sign within units
expressions.

12.4 Statements

An ODL-encoded label is made up of a sequence of zero, one, or more statements followed by
the reserve identifier end.

label ::= [statement]*
end

The body of alabédl is built from four types of statements:

Chapter 12. Object Description Language Specification and Usage 12-13

statement :: = attribute_assignment_statement |
pointer_statement |
object_statement |
group_statement

Each of the four types of statementsis discussed below.

12.4.1 Linesand Records

Labels are also typically composed of lines, where each lineis astring of characters terminated
by aformat effector or a string of adjacent format effectors. The following recommendations are
given for how software that writes ODL should format alabel into lines:

» There should be at most one statement on aline, although a statement may be more than a
singlelinein length. As noted in Section 12.3.5 above, format effectors may appear
before, after or between the lexical elements of a statement without changing the meaning
of the statement. For example, the following statements are identical in meaning:

FI LTER_NAVE = {RED, GREEN, BLUE}
FI LTER_NAVE = {RED

GREEN,

BLUE}

» Eachline should end with a carriage return character followed immediately by aline feed
character. This sequence is an end-of-line signal for most computer operating systems
and text editors.

* The character immediately following the END statement must be either an optional
spacing character or format effector, such as a space, line feed, carriage return, etc.

A line may include a comment. A comment begins with the two characters “/*” and ends with
the two characters “*/”. A comment may contain any character in the ODL character set except
format effectors, which are reserved to mark the end of line (i.e., comments may not be more
than one line long). Comments are ignored when parsing an ODL |abel. When the comment
delimiters (“/*” and “*/”) appear within atext string, they are not interpreted as a comment - they
are simply part of the text string. For example, in the following example the comment will be
included as part of the text string:

NOTE = "All good men cone to the /* Exampl e of incorrect comment*/
aid of their party"

Any characters on aline following a comment are ignored.

In some computer systems files are divided into records. Software for writing and reading ODL -
encoded labels in record-oriented files should adhere to the following rules:

* Alineof an ODL-encoded label may not cross a record boundary, i.e., each line should

12-14 Chapter 12. Object Description Language Specification and Usage

be contained within a single record. Any space left over at the end of arecord after the
last line in that record should be set to all space characters.

* Theremainder of the record that contains the END statement is ignored. The data portion
of the file begins with the next record in sequence.

12.4.2 Attribute Assignment Statement
The attribute assignment statement is the most common type of statement in ODL and is used to
specify the value for an attribute of an object. The value may be a single scalar value, an ordered
sequence of values, or an unordered set of values.

assignment_statement ::= attribute_identifier = value

The syntax and semantics of values are given in Section 12.5.

Examples — Assignment Statements

RECORD_BYTES = 800
TARGET_NAME = JUPI TER
SOLAR_LATI TUDE = (0.25 <DEG>, 3.00 <DEG>)
FI LTER_NAME = {RED,

GREEN,

BLUE}

12.4.3 Pointer Statement
The pointer statement indicates the location of an object.

pointer_statement :: = ~object_identifier = value

As with the attribute assignment statement, the value may be a scalar value, an ordered sequence
of values, or an unordered set of values.

A common use of pointer statementsisto reference afile containing an auxiliary label. For
example:

ASTRUCTURE = "TABLE. FMI™

Thisisapointer statement pointing to afile named “TABLE.FMT” that contains a description of
the structure of the ancillary table from our sample label. Another use of the pointer statement is
to indicate the position of an object within another object. Thisis often used to indicate the
position of major objects within afile. The following examples are from the sample label in
Section 12.1:

N MAGE = 40
A MAGE_HI STOGRAM = 840
AANCI LLARY_TABLE = 842

Chapter 12. Object Description Language Specification and Usage 12-15

The first pointer statement above indicates that the image is located starting at the 40th record
from the beginning of the present file. If an integer valueis used to indicate the relative position
of an object, the units of measurement of position are determined by the nature of the object. For
files, the default unit of measurement isrecords. Alternatively, a units expression can be
specified for the integer value to indicate explicitly the units of measurement for the position. For
example, this pointer:

NN VAGE = 10200 <BYTES>

indicates that the image starts 10,200 bytes from the beginning of the file.

The object pointers above reference locations in the same files as the label containing the pointer.
Pointers may also reference either byte or record locations in data files that are detached, or
separate, from the label file:

NN VAGE
NHEADER

("| MAGE. DAT", 10)
("| MAGE. DAT", 512 <BYTES>)

12.4.4 OBJECT Statement

The OBJECT statement begins the description of an object. The description typically consists of
aset of attribute assignment statements defining the values of the object’s attributes. If an object
isitself composed of other objects, then OBJECT statements for the component objects are
nested within the object’ s description. Thereis no limit to the depth to which OBJECT
statements may be nested.

The format of the OBJECT statement is:

object_statement = object = object_identifier
[statement |*
end_object [= object_identifier]

The object identifier gives a name to the particular object being described. For example, in afile
containing images of several planets, the image object descriptions might be named

VENUS IMAGE, JUPITER_IMAGE, etc. The object identifier at the end of the OBJECT
statement is optional, but if it appears it must match the name given at the beginning of the
OBJECT statement.

12.4.4.1 Implementation of OBJECT Statements

It is recommended that all software for writing ODL include the object identifier at the end as
well as the beginning of every OBJECT statement.

12.4.5 GROUP Statement
The GROUP statement is used to group together statements that are not components of alarger

12-16 Chapter 12. Object Description Language Specification and Usage

object. For example, in afile containing many images, the group BEST_IMAGES might contain
the object descriptions of the three highest quality images. The three image objectsin the
BEST_IMAGES group don’t form alarger object: al they have in common istheir superior
quality.

The GROUP statement is also used to group related attributes of an object. For example, if two
attributes of an image object are the time at which the camera shutter opened and closed, then the
two attributes might be grouped as follows:

GROUP = SHUTTER TI MES
START = 12:30:42.177
STOP = 14: 01: 29. 265

END GROUP = SHUTTER TI MES

The format of the group statement is as follows:

group_statement ::= group = group_identifier
[statement] *
end_group [= group_identifier]

The group identifier gives a name to the particular group, as shown in the example for shutter
times above. The object identifier at the end of the GROUP statement is optional, but if it
appears it must match the name given at the beginning of the GROUP statement. Groups may be
nested within other groups. Thereis no limit to the depth to which groups can be nested.

As opposed to the above ODL implementation, the PDS applies the following restrictions to the
use of GROUPS:

1. The GROUP structure may only be used in a data product label which also contains one
or more data OBJECT definitions.

2. A GROUP may not appear within any OBJECT other than an implicit or explicit FILE

OBJECT.

The GROUP statement must contain only attribute assignment statements, include

pointers, or related information pointers (i.e., no datalocation pointers).

GROUP statements may not be nested.

GROUP statements may not contain OBJECT definitions.

Only PSDD elements may appear within a GROUP statement.

The keyword contents associated with a specific GROUP identifier (e.g.,

CAMERA_MODEL) must be identical across all labels of a single data set.

w

No gk

Usage of a GROUP structure must be coordinated with and approved by the responsible PDS
discipline Node.

Chapter 12. Object Description Language Specification and Usage 12-17

12.4.5.1 Implementation of GROUP Statements

It is recommended that all software for writing ODL include the group identifier at the end as
well as the beginning of every GROUP statement.

12.4.5.2 PDS Usage of GROUP

Although ODL includes the GROUP statement, the PDS does not recommend its use because of
confusion concerning the difference between OBJECT and GROUP.

125 Values
ODL provides scalar values, ordered sequences of values, and unordered sets of values.

value :: = scalar_value | sequence vaue | set_value
A scalar value consists of asingle lexical element:

scalar_vaue:: = numeric_value |
date time _value |
text_string_value |
symbol_value

The format and use of each of these scalar values are discussed in the sections bel ow.

12.5.1 Numeric Values

A numeric scalar value is either adecimal or based integer number, or areal number. A numeric
scalar value may optionally include a units expression.

numeric_value:: = integer [units_expression] |
based_integer [units_expression] |
real [units_expression]

12.5.2 Units Expressions

Many of the values encountered in scientific data are measurements of something. In most
computer languages, only the magnitude of a measurement is represented, without the units of
measurement. ODL, however, can represent both the magnitude and the units of a measurement.
A units expression has the following format:

units_expression
units_factor
mult_op

exp_op

< units_factor [mult_op units factor] * >

units_identifier [exp_op integer]

* |/
*

*

12-18 Chapter 12. Object Description Language Specification and Usage

A units expression is always enclosed within angle brackets. The expression may consist of a
single unitsidentifier like “KM” for kilometers, or “SEC”, for seconds (for example, “1.341E6
<KM>" or “1.024 <SEC>"). More complex units can also be represented; for example, the
velocity “3.471 <KM/SEC>" or the acceleration “0.414 < KM/SEC/SEC>". There is often more
than one way to represent a unit of measure. For example:

0.414 <KM SEC/ SEC>
0.414 <KM SEC** 2>
0.414 <KM SEC* * - 2>

are all valid representations of the same acceleration. The following rules apply to units
expressions:

» The exponentiation operator can specify only a decimal integer exponent. The exponent
value may be negative, which signifies the reciprocal of the units. For example, “60.15
<HZ>" and “60.15 <SEC**-1>" are both ways to specify afrequency.

* Individual units may appear in any order. For example, aforce might be specified as
either “1.55 <GM*CM/ SEC**2>" or “1.55 <CM* GM/SEC**2>".

12.5.2.1 Implementation of Numeric Values

There is no defined maximum or minimum magnitude or precision for numeric values. In
general, the actual range and precision of numbers that can be represented will be different for
each kind of computer used to read or write an ODL-encoded |abel. Developers of software for
reading/writing ODL should document the following:

» Thelargest magnitude positive and negative integers that can be represented

» Thelargest magnitude positive and negative real numbers that can be represented

e The minimum number of significant digitsthat areal number can be guaranteed to have
without loss of precision. Thisisto account for the loss of precision that can occur when
representing real numbers in floating point format within a computer. For example, a 32-
bit floating-point number with 24 bits for the mantissa can guarantee at most 6 significant
digits will be exact (the seventh and subsequent digits may not be exact because of
truncation and round-off errors).

If software for reading ODL encounters a numeric value too large to be represented, the software
must report an error to the user.

12.5.3 Text String Values
A text string value consists of atext string lexical element:

text_string_value :: = quoted_text

Chapter 12. Object Description Language Specification and Usage 12-19

12.5.3.1 Implementation of String Values

A text string read in from alabel is reassembled into a string of characters. The way in which the
string is broken into linesin alabel does not affect the format of the string after it has been
reassembled. The following rules are used when reading text strings:

» |If aformat effector or a sequence of format effectors is encountered within atext string,
the effector (or sequence of effectors) is replaced by a single space character, unless the
last character is a hyphen (dash) character. Any spacing characters at the end of the line
are removed and any spacing characters at the beginning of the following line are
removed. This allows atext string in alabel to appear with the left and right margins set
at arbitrary points without changing the string value. For example, the following two
strings are the same:

“To be or not to be’
and

“Tobeor
not to be"

» If thelast character on aline prior to aformat effector is a hyphen (dash) character, the
hyphen is removed with any spacing characters at the beginning of the following line.
This follows the standard convention in English of using a hyphen to break aword across
lines. For example, the following two strings are the same:

“The planet Jupiter isvery big”
and

“The planet Jupi-
ter isvery big’

e Control codes, other than the horizonta tabulation character and format effectors,
appearing within atext string are removed.

12.5.3.1.1 PDS Text String For matting Conventions

The PDS defines a set of format specifiersthat can be used in text strings to indicate the
formatting of the string on output. These specifiers can be used to indicate where explicit line
breaks should be placed, and so on. The format specifiers are:

\n Indicates that an end-of-line sequence should be inserted.

\t Indicates that a horizontal tab character should be inserted.

12-20 Chapter 12. Object Description Language Specification and Usage

\f Indicates that a page break should be inserted.
\v Must be used in pairs, begin and end. Interpreted as verbatim.
\\ Used to place a backslash in atext string.

For example, the string
“Thisisthefirst line \n and thisis the second line.”
will print as:

Thisisthefirst line
and thisis the second line.

Note: These format specifiers have meaning only when atext string is printed - not when the
stringisread in or stored.

12.5.4 Symboalic Literal Values

A symbolic value may be specified as either an identifier or a symbol string:

symbolic-value :: = identifier | quoted_symbol

The following statements assign attributes to symbolic values specified by identifiers:

TARGET _NAME =10

SPACECRAFT NAME = VOYAGER 2
SPACECRAFT_NAME = ' VOYAGER- 2'
SPACECRAFT_NAME = ' VOYAGER 2'
REFERENCE KEY ID = SM TH1997
REFERENCE_KEY | D = ' LAUREL&HARDY1997'

The quotes must be used if the symbolic value does not have the proper format for an identifier
or if it contains characters not allowed in an identifier. For example, thevalue ‘FILTER _+ 7’
must be enclosed within quotes, since thiswould not be alegal ODL identifier. Similarly, the
symbolic value ‘U13-A4B’ must be in quotes because it contains a special character (the dash)
not allowed in an identifier. There is no harm in putting alegal identifier within quotes. For
example:

SPACECRAFT _NAME = ' VOYAGER 2'
is equivalent to the second example in the list above.

Symbolic values may not contain format effectors, i.e., they may not cross a line boundary.

Chapter 12. Object Description Language Specification and Usage 12-21

12.5.4.1 Implementation of Symbolic Literal Values
Symbolic values are converted to upper case on input. This means that alowercase string is
converted to the equivalent uppercase string; asin the following example:

Original string: SPACECRAFT _NANME
Converted string: SPACECRAFT_NAME

" Voyager _2'
" VOYAGER _2'

12.5.4.2 PDS Convention for Symbolic Literal Values

Since the current use of the ODL within the PDS does not require syntactic differentiation
between symbols and text strings, PDS prefers that double quotation marks () be used instead of
apostrophes around symbol strings.

12.5.5 Sequences

A sequence represents an ordered set of values. It can be used to represent arrays and other kinds
of ordered data. Only one- and two-dimensional sequences are alowed.

segquence_value :: = sequence_1D | sequence 2D
sequence 1D .. = (scalar_value|[, scalar_value]*)
sequence 2D = ([sequence _1D] +)

A sequence may have any kind of scalar value for its members. It is not required that al the
members of the sequence be of the same type. Thus a sequence may represent a heterogeneous
record. Each member of atwo-dimensional sequence is a one-dimensional sequence. This can be
used, for example, to represent atable of values. The order in which members of a sequence
appear must be preserved. Thereis no upper limit on the number of values in a sequence.

For example; AVERAGE_ECCENTRI CI TY = (0, 1, 2, 3, 4, 5, 9)

12.5.6 Sets

Sets are used to specify unordered values drawn from some finite set of values.
set value:: ={scalar_vaue[, scaar_vaue]*} | {}

Note that the empty set is allowed: The empty set is denoted by opening and closing brackets
with nothing except optional spacing characters or format effectors between them.

The order in which the members appear in the set is not significant and the order need not be
preserved when a set is read and manipulated. There is no upper limit on the number of valuesin
aset.

12-22

Example

Chapter 12. Object Description Language Specification and Usage

FILTER_ NAME = { RED, BLUE, GREEN, HAZEL }

12.5.6.1 PDSRestrictionson Sets
The PDS alows only symbol values and integer values within sets.

12.6 ODL Summary

Character Set (Section 12.2)

ODL usesthe SO 646 character set (the American version of the SO 646 standard is ASCII).
The ODL character set is partitioned as follows:

character

letter
digit
specia_character

spacing_character
format_effector

other_character

.. =letter | digit | special_character |

spacing_character | format_effector |

other_character
A-Z|az
0|112|3]|4]15]|6]7]8]|9
{IHICD I+ 071 1=

L # &N <>

= gpace | horizontal tabulation

. : =carriagereturn | line feed |
form feed | vertical tabulation

=S| % ?71@(]|~

vertical bar | other control characters

Lexical Elements (Section 12.3)

integer
unsigned_integer
sign
based_integer
extended_digit
radix

real
unscaled_real

scaled real
exponent

date

year_doy
year_month_day

. : =[sign] unsigned_integer

= [digit]+

= |_

r=radix #[sign] [extended_digit]+ #

- =digit | letter

. : = unsigned_integer

.. =[sign] unscaled real | [sign] scaled rea

::=unsigned_integer . [unsigned_integer] |
. unsigned_integer

. : = unscaled_real exponent

.. = E integer | e integer

.. =year_doy | year_month_day

. : = year - doy

. 1 = year - month - day

Chapter 12. Object Description Language Specification and Usage

12-23

year : » = unsigned_integer

month . =unsigned_integer

day : : = unsigned_integer

doy : ;= unsigned_integer

time .. =loca_time|utc_time | zoned_time

local_time ::=hour_min_sec

utc_time . =hour_min_secZ

zoned time .- =hour_min_sec zone offset

hour_min_sec 2 =hour : minute[: second]

zone_offset :: =sign hour [: minute]

hour . : = unsigned_integer

minute .= unsigned_integer

second . : = unsigned_integer | unscaled_red

date time . =dateT time

quoted_text .. ="[character]*”

guoted_symbol . : = ‘[character]+

identifier o1 = letter [letter | digit | _letter | _digit]*
Statements (Section 12.4)

label . = [statement]*

end
statement :» = assignment_stmt | pointer_stmt |

object_stmt | group_stmt

assignment_stmt attribute identifier = value

pointer_stmt . : =" object_identifier = value
object_stmt . : = object = object_identifier
[statement]*
end_object [= object_identifier]
group_stmt .. =group = group_identifier
[statement]*

end_group [= group_identifier]

Values (Section 12.5)

value .. =scalar_value | sequence value| set value

scalar_value . =numeric_value | date_time value |
text_string_value | symbolic_value

numeric_value :: = integer [units_expression] |

based_integer [units_expression] |
real [units_expression]

units_expression : » =<units_factor[mult_op units_factor]* >
units_factor . - = units_identifier [exp_op integer]
mult_op =*1/

exp_op =**

date time value .. = date|time | date_time

12-24 Chapter 12. Object Description Language Specification and Usage

text_string_value : » = quoted_text

symbolic_value .. = identifier | quoted_symbol
sequence_value . : =sequence_|D | sequence 2D
sequence 1D .. =(scalar_value[, scalar_value]*)
sequence 2D . . = ([sequence_ID]+)

set_value .. ={ scalar_value[,scaar_vaue]* } |{}

12.7 Differences Between ODL Versions

This section summarizes the differences between the current Version 2 of ODL and the previous
Versions 0 and 1. Software can be constructed to read all three versions of ODL, however it is
important that software for writing labels only write labels that conform to ODL Version 2.

12.7.1 Differencesfrom ODL Version 1

Version 1 labels were used on the Voyager to the Outer Planets CD-ROM disks and many other
data sets. Version 1 did not include the GROUP statement and had more restrictive definitions
for sets, which were limited to integer or symbolic literal values, and sequences, which were
limited to arrays of homogeneous values. The following sections detail non-compatible
differences and how they can be handled by software writers.

12.7.1.1 Ranges
Version 1 of ODL had a specific notation for integer ranges:

range value :: = integer..integer

This notation is not allowed in ODL Version 2, though parsers may still recognize the ‘ double-
dot’ range notation. On output, arange is now encoded as a two value sequence, with the low-
value of the range being the first element of the sequence and the high-value being the second
element of the sequence.

12.7.1.1.1 Delimitersin Sequencesand Sets

In Version 1 theindividual values in sets and sequences could be separated by a comma or by a
spacing character. As of Version 2, acommais required. Parsers may allow spacing characters
between values rather than commas. Software that writes ODL should place commas between all
values in a sequence or set.

12.7.1.1.2 Exponentiation Operator in Units Expressions

In Version 1 of ODL the circumflex character (") was used as the exponentiation operator in
units expressions rather than the two-asterisk sequence (**). Parsers may till alow the
circumflex to appear within units expressions as an exponentiation operator. Software for writing

Chapter 12. Object Description Language Specification and Usage 12-25

ODL should use only the ** notation.

12.7.2 Differencesfrom ODL Version O

Version 0 of ODL was developed for and used on the PDS Space Science Sampler CD-ROM
disks. The major difference between this and subsequent versionsis that Version 0 did not
include the OBJECT statement. All of the attributes specified in alabel described a single object:
the file that contained the label (or that was referenced by a pointer).

12.7.2.1 Date-Time Format

ODL Version 0 was produced prior to the space community's acceptance of the ISO/DIS 8601
standard for dates and time and it uses a different date and date-time format. The format for
Version 0 dates and date-times is as follows:

date . =year / month/ day_of _month |year / day_of year
date time .. = date - time zone
zone i =<identifier>

The options for time specification in ODL Version 0 are a subset of thosein Version 2.
Consequently, parsers that handle Version 2 time formats will also handle Version O times.

12.7.3 ODL/PVL Usage

The concept for a Parameter Vaue Language/Format (PVL) is being formalized by the
Consultative Committee for Space Data Systems (CCSDS). It is intended to provide a human
readable data element/val ue structure to encode data for interchange. The CCSDS version of the
PVL specification isin preliminary form.

Some organizations that deal with the PDS have accepted PVL astheir standard language for
product labels. PVL isasuperset of ODL, so some PVL constructs are not supported by the PDS.
In addition, some ODL constructs may be interpreted differently by PVL software.

The ODL/PVL usage standard defines restrictions on the use of ODL/PVL in archive quality
data sets. These restrictions are intended to ensure the compatibility of PVL with ODL and
existing software.

1. A labd constructed using PVL may be attached - embedded in the same file as the
data object it describes, or detached - residing in a separate file and pointing to the
datafile the label describes.

2. All statements must be terminated by a <CR> <LF> pair. Semicolons may not be
used to terminate statements.

3. Only alphanumeric characters and the underscore character may be used in data ele-
ments and undelimited text values (literals). In addition, data elements and

12-26

10.

11.

12.

13.

14.

15.

Chapter 12. Object Description Language Specification and Usage

undelimited text values must begin with aletter.
Keywords must be 30 characters or less in length.

Keywords and standard values must be in upper case. Literals and strings may bein
upper case, lower case, or mixed case.

Comments must be contained on a single line, and a comment terminator (*/) must
be used. Comments may not be embedded within statements. Comments may not be
used on the same line as any statement if the comment precedes the statement.
Comments may be on the same line as a statement if the comment follows the
statement and is separated from the statement by at |east one white space, but thisis
not recommended.

Text values that cross line boundaries must be enclosed in double quotation marks

(")

Valuesthat consist only of letters, numbers, and underscores and that begin with a
letter may be used without quotation marks. All other text values must be enclosed
in either single (* *) or double (* ") quotation marks.

Sequences are limited to two dimensions. Null (empty) sequences are not allowed.
Sets are limited to one dimension. In other words, sets and sequences may not be
used inside a set.

Only the OBJECT, END_OBJECT, GROUP and END_GROUP aggregation mark-
ers may be used.

Unit expressions are only allowed following numeric values (i.e.,
“DATA_ELEMENT =7 <BYTES>" isvalid. but “DATA_ELEMENT = MANY
<METERS>" is not).

Unit expressions may include only a phanumeric characters, the underscore, and the
symbols“*”, “/", “(",*)”, and “**” (the last representing exponentiation).

Signs may not be used in non-decimal numbers (i.e., “2#10001#" isvalid, but
“-2#10001#" and “2#-10001#" are not). Only the bases 2, 8, and 16 may be used for
non-decimal numbers.

Alternate time zones (e.g., YYYY-MM-DDTHH:MM:SS.SSS + HH:MM) may not
be used. The only allowed timeformat isYYYY-MM-DDTHH:MM:SS.SSS.

Valuesinintegral parts of dates and times must be padded on the left with zeroes as
necessary to fill thefield. In other words, the first of April in the year 2001 must be

Chapter 12. Object Description Language Specification and Usage 12-27

written as “2001-04-01", not “2001-4-1"

16. AnEND statement must conclude each ODL/PVL statement list.

The following are guidelines for formatting ODL/PVL expressions.

1.

2.

The assignment symbol (=) must be surrounded by blanks.
Assignment symbols (=) should be aligned if possible.

Keywords placed inside an aggregator (OBJECT or GROUP) must be indented with
respect to the OBJECT and END_OBJECT or GROUP and END_GROUP state-
ments which enclose them.

PDS label lines must be 80 characters or less in length, including the end-of-
statement (i.e., <CR> <LF>) delimiter. (Note that while 80 characters can be
displayed on most screens, some editors and databases will wrap or truncate lines
that exceed 72 characters.)

Horizontal tab characters may not be used in PDS labels. Although both ODL and
PVL alow the use of these characters some simple parsers cannot handle them. The
equivalent number of space characters should be used instead.

12-28 Chapter 12. Object Description Language Specification and Usage

GROUP, 12-15
PDS use, 12-16
OBJECT, 12-15
Object Description Language (ODL)
character set, 12-3
comments, 12-13
date and time formats, 12-8
date formats, 12-9
END statement, 12-13
fileformat, 12-13
identifiers
reserved, 12-12
syntax, 12-11
implementation
date and time, 12-9
implementation notes, 12-2
integer formats, 12-6, 12-7
language summary, 12-21
lexical elements, 12-6
numeric values, 12-17
Parameter Value Language (PVL), 12-25
PDS implementation, 12-2
date and time, 12-9
sets, 12-21
symbolic literals, 12-20
PVL guidelines, 12-26
PVL restrictions on archivefiles, 12-25
real number formats, 12-7
revision notes, 12-23
version 0, 12-24
version 1, 12-23
sample data label, 12-1
sequences, 12-20
sets, 12-21
special characters, 12-12
specification, 12-1
statements, 12-12
assignment, 12-14
GROUP, 12-15
OBJECT, 12-15
pointer, 12-14
symbol strings, 12-11
symbolic literals, 12-20
text string values, 12-18
text strings, 12-10

12-2 Chapter 12. Object Description Language Specification and Usage

time formats, 12-9
units of measure, 12-17
Parameter Value Language (PVL), 12-2, 12-25

Chapter 13. PDS Objects 131

Chapter 13. PDS Objects/ Groups

The Planetary Data System has designed a set of standard Objects and Groups to be used for
submitting catal og object information as well as for labeling data products. These standard
Objects and Groups, along with definitions of individual keywords comprising those Objects and
Groups, are defined in the Planetary Science Data Dictionary. In addition, Object and Group
definitions and examples are also included in Appendix A and Appendix B of this document.

13.1 Generic and Specific Data Object Definitions

For each type of data object that PDS has defined (i.e., IMAGE, TABLE, etc.), there are two
categories of definitions: generic and specific. A generic object definition isthe universal
definition of an object, or superset of keywords that can be used. A specific object definitionisa
subset of keywords used for a particular data product to allow effective use of validation tools.

Generic object definitions are designed and approved by the Planetary Data System, and defined
in the Planetary Science Data Dictionary. Each object definition lists the elements and sub-
objects required to be present each time the object is used in a product label. The dictionary
definition also provides alist of additional, optional keywords that are frequently used by data
preparers. Finaly, note that any element defined in the PSDD may be included as an optional
element in any object definition, at the discretion of the data preparer.

A specific object definition is defined for a particular data product and is based on asingle
generic object. The data preparer, in consultation with a data engineer, combines al the required
elements of that object with a set of optional elements selected for their relevance to the data at
hand. The result is a specific object definition. This definition is subject to approval during a
design review.

The following examplesillustrate the evolution from the generic IMAGE object to a specific
IMAGE object, followed by an instance of that specific IMAGE. Note that when a specific
object definition is created and used, the usage should be consistent for all labels using that
object.

OBJECT = GENERI C_OBJECT_DEFI NI TI ON

NAME = | MAGE

STATUS_TYPE = APPROVED

STATUS_NOTE ="V2.1 1991-01-20 WNMDM New Data Object Definition"
DESCRI PTI ON ="An image object is a regular array of sanple

val ues. |mage objects are nornmally processed with special display tools to

produce a visual representation of the sanple values. This is done by assigning
brightness levels or display colors to the various sanple values. |nmages are
conposed of LINES and SAMPLES. They may contain nultiple bands, in one of
several storage orders.

Note: Additional engineering values may be prepended or appended to each LINE
of an inmage, and are stored as concatenated TABLE objects, which nust be naned
LI NE_PREFI X and LI NE_SUFFI X. | MAGE obj ects nmay be associated with other

obj ects, including H STOGRAMs, PALETTEs, H STORYs and TABLEs which contain
statistics, display paranmeters, engineering values or other ancillary data."

SOURCE_NAVE = "PDS CN M MARTI N'
REQUI RED_ELEMENT _SET = {LI NE_SAVPLES, LINES, SAMPLE_BITS,

13-2 Chapter 13. PDS Objects

SAMPLE_TYPE}
OPTI ONAL_ELEMENT_SET = { BAND_SEQUENCE, BAND STORAGE_TYPE,

BANDS, CHECKSUM DERT VED_ MAXI MUM

DERI VED M NI MUM DESCRI PTI ON,

ENCODI NG _TYPE, FI RST_LI NE,

FI RST_LI NE_SAVPLE, | NVALI D,

LI NE_PREFI X_BYTES, LI NE_SUFFI X_BYTES, M SSI NG,

OFFSET, SAMPLE BI T_MASK, SAMPLTNG FACTOR,

SCALI NG FACTOR, SOURCE_FI LE_NAME,

SOURCE_LI NES, SOURCE_LI NE_SAVPLES,

SOURCE_SAMPLE_BI TS, STRETCHED FLAG,

STRETCH_MAXI MOM STRETCH M NI MUM PSDD}

REQUI RED_OBJECT_SET = "N A"

OPTI ONAL_OBJECT_SET = "N A"

OBJECT_CLASSI FI CATI ON_TYPE = STRUCTURE

OBJECT = ALI AS

NANE = "N A"

USAGE_NOTE = "N A"

END_OBJECT = ALI AS

END_OBJECT = GENERI C_OBJECT_DEFI NI TI ON

This next example illustrates an IMAGE object definition being used for a specific case.

OBJECT = SPECI FI C_OBJECT_DEFI NI TI ON

NAME = XYZ_| NVAGE

STATUS_TYPE = APPROVED

STATUS_NOTE = "V2.1 1991-02-10 TMA New specific data object
definition"

DESCRI PTI ON = "The XYZ image is..."

SOURCE_NAME "PDS CN' M MARTI N'

REQUI RED_ELEMENT _SET {LI NE_SAVPLES, LINES, SAMPLE_BITS,
SAMPLE_TYPE, SAMPLI NG FACTOR,
SOURCE_FI LE_NAME,

SOURCE_LI NES, SOURCE_LI NE_SAMPLES,
SOURCE_SAMPLE_BI TS, FIRST LI NE,

FI RST_LI NE_SAVPLE}
OBJECT_CLASSI FI CATI ON_TYPE = STRUCTURE

OBJECT = ALI AS
NANE = "NA"
USAGE_NOTE = "N A"
END_OBJECT = ALI AS
END_OBJECT = SPECI FI C_ OBJECT_DEFI NI TI ON

13.1.1 Primitive Objects

Generic objects have a subclass called primitive objects that includes the ARRAY,
COLLECTION, ELEMENT, and BIT_ELEMENT objects. The primitive objects are used as the
building blocks for describing very irregular data that cannot be accommodated by any other
generic object. If at all possible, standard, well-supported generic objects (such as TABLE and
IMAGE) should be used to describe archival data

Chapter 13. PDS Objects 13-3

13.2 Generic and Specific Data Group Definitions

For each type of data Group that PDS has defined (i.e.,, PARAMETERS, etc.), there are two
categories of definitions: generic and specific. A generic group definition is the universal
definition of a group, or superset of keywords that can be used. A specific group definitionisa
subset of keywords used for a particular data product to allow effective use of validation tools.

Aswith OBJECTSs (see PDS Standards Reference, section 13.1), there are two categories of
GROUPs, generic and specific. The generic GROUP is the universal definition of the GROUP,
specified in an appendix of the Standards Reference. The specific GROUP is an implementation
of the generic GROUP for a particular data set. Shown below is a generic GROUP definition,
and then an example of an instance of that GROUP in a data product.

OBJECT = GENERI C_GROUP_DEFI NI TI ON

NAME = CAMERA MODEL

STATUS_TYPE = PENDI NG

STATUS_NOTE ="V1.0 2001-07-09 EDR New Group Definition"

DESCRI PTI ON ="A camera nodel group is a collection of paraneters

necessary to fully describe the geonetric characteristics of a canera system"

"PDS | M3 E. RYE"
{ CAVERA MODEL_NAME, CAMERA MODEL_TYPE,
CAVERA_MODEL _DESC, CALI BRATI ON_SOURCE_| D,
GEOVETRY_SOURCE_| D, COORDI NATE_SYSTEM NAME,
MODEL_COVPONENT | D, MODEL_COMVPONENT _NAME,
MODEL _COMPONENT_UNI T_I D}

OPTI ONAL_ELEMENT_SET = { MODEL_ COVPONENT_1_VECTOR,

MODEL _COMPONENT _2_VECTOR,

MODEL _COVPONENT_3_VECTOR,

MODEL _COMPONENT_4_VECTOR,
MODEL _COVPONENT_5_VECTOR,

SOURCE_NAVE
REQUI RED_ELEMENT SET

MODEL_ COVPONENT_6_VECTOR

MODEL_COMPONENT_7_VECTOR, PSDD}
OBJECT = ALI AS
NANE = "N A"
USAGE_NOTE = "N A"
END_OBJECT = ALI AS
END_OBJECT = GENERI C_GROUP_DEFI NI TI ON

An example of using a GROUP follows:

GROUP = CAVERA MODEL
CAVERA_MODEL_NAVE = "M PS-0"
CAVERA_NMODEL_TYPE = " CAHV"
NCAVERA_MODEL_DESC = " CAHV. ASC"

CALI BRATI ON_SOURCE_| D = " UOFA- BACKLASH"
GEOVETRY_SOURCE_| D = " TELEMETRY"
COORDI NATE_SYSTEM NAVE = "| MP- CAVERA"
MODEL_COMPONENT_| D =(C, A H V)

"CENTER', "AXI S',

"HORI ZONTAL", "VERTI CAL")

"m, "none", "pixel", "pixel")
3.469, 14.593, 8.937)

0.351, 0.758, 17.932)

14. 020, 15.336, 23.714)
27.423, 3.719, 16.426)

MODEL _COVPONENT_NANE

MODEL_COMPONENT_UNI T_I D
MODEL_COMPONENT_1_VECTOR
MODEL_COMPONENT_2_VECTOR
MODEL _COMPONENT_3_VECTOR
MODEL_COMPONENT_4_VECTOR
END_OBJECT

13-4

Chapter 13. PDS Objects

In order to facilitate the inclusion of multiple instances of keywords within data product labels
without requiring awhole host of new GROUPS, thereis a special GROUP called the
PARAMETERS GROUP. It has no required elements, and the set of all elementsin the PSDD as
its optional element set.

OBJECT

NAME
STATUS_TYPE
STATUS_NOTE
DESCRI PTI ON

SOURCE_NAVE

REQUI RED_ELEMENT _SET
OPTI ONAL_ELEMENT_SET =

OBJECT
NAVE
USAGE_NOTE
END_OBJECT

END_OBJECT

For example:

GROUP
SHUTTER _MODE
FI LTER_NUMBER
FI LTER_NAME
EXPOSURE_DURATI ON
END_OBJECT

GROUP
SHUTTER_MODE
FI LTER_NUMBER
FI LTER_NAMVE
EXPOSURE_DURATI ON
END_OBJECT

GENERI C_CGROUP_DEFI NI TI ON

PARAVETERS

PENDI NG

"V1.0 2001-07-09 EDR New G oup Definition"
"The paraneters group provides a nechanismfor
Grouping nultiple sets of related paraneters
within a data product |abel."

GENERI C_GRCOUP_DEFI NI TI ON

COMVANDED _| NST_PARAMETERS
"BOTSI M

5

"L570- R570"

1.05

COMVVANDED _| NST_PARAMETERS

TELEMETRY_I NST_PARAVMETERS
" AUTO'

0

" CLEAR"

0.773

TELEMETRY_| NST_PARAMETERS

13.2.1 Implementation of Group Statements
PDS applies the following restrictions to the use of GROUPS:

1.

2.

o gk

The GROUP structure may only be used in a data product label which also contains one
or more data OBJECT definitions.
A GROUP may not appear within any OBJECT other than an implicit or explicit FILE

OBJECT.

The GROUP statement must contain only attribute assignment statements, include
pointers, or related information pointers (i.e., no data location pointers).

GROUP statements may not be nested.

GROUP statements may not contain OBJECT definitions.

Only PSDD elements may appear within a GROUP statement.

Chapter 13. PDS Objects 135

7. The keyword contents associated with a specific GROUP identifier (e.g.,
CAMERA_MODEL) must be identical across all labels of asingle data set.

Usage of a GROUP structure must be coordinated with and approved by the responsible PDS
discipline Node.

Descriptors may be pre-pended to any generic Group name to produce, and distinguish between,
specific instances of the generic group (i.e., any generic Group hame may be preceded with a
qualifier to uniquely identify the specific instance of the generic Group). For example, the
generic PARAMETERS Group could have specific instances of “A_ PARAMETERS’,
“B_PARAMETERS’, etc. Pre-pending a descriptor to the generic instances alows multiple
instances of the Group to be repeated within asingle label.

The specific GROUP is an implementation of the generic GROUP for a particular data set and
must be consistent in its structure (i.e., use the same set of keywords) across the data set. For
example, the PARAMETERS Group may consist of any keywords defined within the PSDD.

In the following examples, the TELEMETRY_GEOMETRY _PARAMETERS Group consists of
three keywords and the CORRECTED_GEOMETRY_PARAMETERS Group consists of three
keywords. In this case, both specific instances use the same keywords but could consist of
different sets of keywords. Both instances can be collocated within a single data product label.
But, each instance across the dataset must contain the same set of keywords.

GROUP
GEOVETRY_SOURCE_| D
| NSTRUVENT _AZI MOTH
| NSTRUVENT_ELEVATI ON
END_OBJECT

TELEMETRY_GEOVETRY_PARAMETERS
" TELEMETRY"

35. 6 <DEGREES>

-15. 4 <DEGREES>
TELEMETRY_GEOVETRY_PARAMETERS

GROUP
GEOVETRY_SOURCE_| D
| NSTRUVENT _AZI MOTH
| NSTRUVENT_ELEVATI ON
END_OBJECT

CORRECTED_GEOVETRY_PARAMETERS
"M PS_MPFMOS"

35. 9 <DEGREES>

-15. 5 <DEGREES>
CORRECTED_GEQOVETRY_PARAMETERS

GROUP
GEOVETRY_SOURCE_| D
| NSTRUVENT _AZI MOTH
| NSTRUVENT_ELEVATI ON
END_OBJECT

CORRECTED_GEOVETRY_PARAMETERS
" UOFA- BACKLASH'

35. 8 <DEGREES>

-15. 6 <DEGREES>
CORRECTED_GEOVETRY_PARAMETERS

In the near term, the only validation requirements for GROUPs will be that all the elements
present in a GROUP must be present in the PDS Data Dictionary. In the future, it is hoped that
the contents of the GROUPs will also be validated against their generic GROUP specifications.
Thiswould be to ascertain that all the required elements of a particular GROUP are present and
that no elements are present that are not specified in the set of required and optional elements.

13-6 Chapter 13. PDS Objects

groups
generic, 13-3
example, 13-3, 13-5
implementation, 13-4
specific, 13-3
standard groups, 13-1
using, 13-3
objects
generic, 13-1
example, 13-1
primitive, 13-2
specific, 13-1
example, 13-1
standard objects, 13-1

Chapter 14. Pointer Usage 14-1

Chapter 14. Pointer Usage

Pointers are used within PDS labels to indicate the relative locations of objects in the same file
and to reference external files. Pointer statements begin with a caret (“”) and the name of a PDS
object or element. The value part of the pointer statement indicates the location of the referenced
information.

14.1 Typesof Pointers

Pointer statements fall into three main categories. data location pointers, include pointers, and
related information pointers.

14.1.1 Data L ocation Pointers (Data Object Pointers)

The most common use of pointers is for linking object descriptionsto the actual data. The syntax
of these pointers depends on whether the label is attached or detached from t he data it describes.
There are five forms for the value fields, as shown in these examples:

(1) ~NMAGE =12

(20 NMAGE = 600 <BYTES>

(3) ANINDEX_TABLE ="INDEX.TAB"

(4) ~SERIES = ("C100306.DAT", 2)

(55 "SERIES ("C100306.DAT", 700 <BYTES>)

Examples (1) and (2) are pointersin attached labels . This type of pointer allows reading software
to scan the label for the appropriate pointer and then skip right to the data at its location
elsawhere in the file. Inthe first case, the data begin at record 12 of the labeled file. In the
second, the data begin at byte 600.

External datafiles are referenced in examples (3), (4) and (5). Since these pointers occur in
detached labels, they must identify a file name and (optional) offset. In example (3), the data
begin at record 1 of the data file“INDEX.TAB” (i.e., no explicit offset is taken as an offset of
“1"). Inexample (4), the data begin at record 2 of the datafile, "C10030 6.DAT", whereasin
example (5), the data begin at byte 700.

14.1.2 Include Pointers

Another common use of pointers isto reference externd filesin PDS labels or catalog objects.
Files referenced by include pointers are included directly at the location of the pointer statement.
These pointers are classified as include -type pointers since they act like the “#include”
statementsin C program source files. STRUCTURE, CATALOG, and MAP_PROJECTION
pointers fal into this category. Following are some examples of include pointer statements:

(1) ~STRUCTURE
(2) ~STRUCTURE

"ENGTAB.FMT"
"IMAGE.FMT"

14-2 Chapter 14. Pointer Usage

(3) ~CATALOG ="CATALOG.CAT"
(4) ~DATA_SET_MAP_PROJECTION ="DSMAPDIM.CAT"

The structure file in example (1) isre ferenced by a TABLE object. The “ENGTAB.FMT” file
contains column object definitions needed to complete the TABLE definition. Some column
definitions might be stored in a separate file if, for example, a number of different TABLE
objects use the same definitions. Similarly, in example (2) an IMAGE object definition (i.e. , all
statements beginning with “OBJECT = IMAGE” and ending with “END_OBJECT = IMAGE”")
is contained in an externd file called “IMAGE.FMT".

In example (3), the external file“CATALOG.CAT” i sreferenced by aVOLUME object in order
to provide afull set of catalog information associated with the volume without having to
duplicate definitions that already exist in the other file.

In example (4), the externa file “DSMAPDIM.CAT” isreferenced b y an
IMAGE_MAP_PROJECTION object to complete the map projection information associated
with the image.

14.1.3 Related Information Pointers (Description Pointers)

The third and final use of pointers occursin PDS labels that reference external files of additional
documentation of special use to human readers. These pointers are formed using elements that
end in “DESCRIPTION” or “ DESC” . They reference text files not written in ODL. Note: These
pointers are not meant to be used to refer to software tools.

For example:

ADESCRIPTION ="TRK_2 25.ASC"
In this example, the pointer references an external ASCI1 document file, TRK_2 25.ASC, which
provides a detailed description of the data. Note that in this case the documentation file must

have its own PDS label, since the label containing the "DESCRIPTION pointer describes the
contents of a different file.

Chapter 14. Pointer Usage 14-3

14.2 Rulesfor Resolving Pointers
Following are the rules for resolving pointer references to externa files (see the Volume
Organization and Naming chapter in this document for information about physical and logical
volume structures):
For a pointer statement in FILE_A:

(D) Look in the same directory asFILE_A

(2a) For asingle physical volume (no logical volumes), look in the following top level

directory:
Pointer Directory
ASTRUCTURE LABEL
ACATALOG CATALOG
"DATA_SET_MAP_PROJECTION CATALOG*
AINDEX_TABLE INDEX
ADESCRIPTION or "TEXT DOCUMENT

(2b) Within a logical volume, look in the top level subdirectory specified by the
LOGICAL_VOLUME_PATH_NAME keyword:

Pointer LOGICAL_VOLUME_PATH_NAME/
Directory
ASTRUCTURE LABEL
ACATALOG CATALOG
"DATA_SET_MAP_PROJECTION CATALOG*
AINDEX_TABLE INDEX
ADESCRIPTION or "TEXT DOCUMENT

* Note: For volumes using PDS Version 1 or 2 standards, the MAP_PROJECTION files
may be located inthe LABEL directory

All pointers to data objects should be resolved in step (1), since these files are always required to
be located in the same directory as the label file.

14-4

data pointers, 14-1
description pointers, 14-2
include pointers, 14-1
pointers
data, 14-1
in attached labels, 14-1
in detached labels, 14 -1
description, 14-2
include, 14-1
rules for resolving, 14-3
usein labels, 14-1

Chapter 14. Pointer Usage

Chapter 15. Record Formats 151

Chapter 15. Record Formats

The choice of proper record format for a datafile is influenced by a number of factors. In

general, the PDS strongly recommends a record format of fixed -length or stream be used
whenever possible to ensure transportability across operating systems and computer platforms
and to avoid potentia difficulties with interpretation of the underlying data. Records of type
FIXED_LENGTH arerequired for ASCI| files described by TABLE Objects. Records of type
VARIABLE _LENGTH may be used in cases where storage efficiency is amagor consideration,
as, for example, in storing compressed images. Records of type STREAM should be used for text
files for ease of transportation to various computer systems. | nput/output operations with stream
fileswill generally use string -oriented access, retrieving one delimited record from the file each
time.

The RECORD_TY PE element in the PDS label indicates the format of the records in the
associated datafile (attached or detached).

Table 15.1: Recommended Record Formats

RECORD_TYPE= RECORD_TYPE=STREAM [RECORD_TY PE=VARIABLE
FIXED LENGTH
Data format BINARY, ASCII ASCII BINARY
Environment STRUCTURED AD HOC STRUCTURED (VAX/VMYS)
Data volume LARGE SMALL, MEDIUM VERY LARGE
Input / Output READ / WRITE STRING 1/0 CUSTOM, SPICE

15.1 FIXED_LENGTH Records

Records of type FIXED_LENGTHnormally use a physical record length (RECORD_BYTES)
that corresponds directly to the logical record length of the data objects (that is, one physical
record for each image line, or one physical record for each row of atable). In some cases, logical
records are blocked into larger physical records to provide more efficient storage and access to
the data. This blocking is gill an important consideration when storing data on magnetic tape,
(which requires a gap on the tape between records), but is not generally a consideration in data
sets stored on magnetic or CD-ROM disks. In other cases, the physical record length is
determined by compatibility with external systems or standards, asin FITS -formatted files.

The PDS strongly recommends using a physical record length that matches the logical r ecord
length of the primary data object in the file for greatest compatibility with application software.
In the data label, RECORD_BY TES defines the physical record length.

Figure 15.1 illustrates the physical and logical structure used to build astand ard PDS
FIXED_LENGTH file.

15-2 Chapter 15. Record Formats

Physical Structure Logical Structure
+4—— Record Bytes = 1204 »
Label Record 1 Lable ling 1 <cr If> Label line 2 <cr If= ...
Label Record 2 Label line 59 <cr If= Label line 60 <cr lf= | Blank fill
Histogram Rec 256 32 bit integers | Blank fil
Eng Table Rec eng data Blank fill
Line Hdr Rec 1
Line Hrd Rec 2
Line Hdr Rec 55 | |] [| | | | | Blank fill
Line Rec 1
Line Rec 2
Line Rec 1056 | |

Figure 15.1 Physical and Logical Structurefor Fixed Length Files

15.2 STREAM Records

The STREAM record type is reserved for ASCII text files. The records must be delimited by the
two-character (carriage return, linefeed) sequence (“<CR><LF>" or “ CR/LF"). Thisisthe same
record delimiter used for all PDS label and catalog files.

All major operating systems recognize one of either the carriage return, the line feed, or the
CR/LF sequence as an ASCII record delimiter; thus, <CR><LF> will work in all cases. There are
utilities available for Macintosh (Apple File Exchange) and Unix (tr trandation utility) systems
to remove the unneeded extra control character.

Note that the STREAM record type should only be used in those cases where the data contain
delimited ASCII records that are not of fixed length. The FIXED _LENGTH specification should
be used wherever possible.

15.3 VARIABLE_LENGTH Records

PDS datafiles using the VARIABLE_LENGTH record type must use the VAX/VMS counted
byte string format. That is, each record string is preceded by atwo-byte LSB integer containing
the length of the record. The records may not contain carriage control characters.

The use of the VARIABLE_LENGTH record type is discouraged because of its inherent
dependence on a priori knowledge of the record structure for proper reading and writing.
Notwithstanding, VARIABLE_LENGTH records may be used in the following circumstances:

?? When supporting software, which can be executed on a variety of hosts, is provided along
with the data. For example, the Voyager CD -ROM disks contain variable -length

Chapter 15. Record Formats 15-3

compressed images along with a decompression program that can be compiled and
executed on VAX, PC, Macintosh and UNIX platforms. The decompression program
reformats the data into a variety of forms.

?? When thefiles are intended for use only in a specific environment that supportsthe
selected record structure. For example, the Viking Infrared Thermal Mapper (IRTM)
CDROM uses a VAX/VMS variable-length record format for software and command
files. Note, however, that such proprietary formats are generally inappropriate for PDS
deep archiving purposes and should be vigoroudly avoided in archive volumes.

15.4 UNDEFINED Records

Records with an undefined record type have no specific record structure. For files with attached
labels, the label portion should be written using the STREAM conventions described above.
When the record type is designated UNDEFINED, no record terminators are recognized and no
record length isimplied; the data are taken to b e a continuous stream of bytes.

The use of the UNDEFINED record type when referring to a single datafile is strongly
discouraged. “RECORD_TY PE = UNDEFINED” is properly used in cases where a single label
points to two or moredifferent data files with di fferent record types (i.e., one file with STREAM
records and another with VARIABLE_LENGTH records).

154

ASCI| text files
record format, 15-2
datafiles
record format, 15-1
record formats, 15-1
blocking, 15-1
FIXED _LENGTH, 151
STREAM, 15-2
UNDEFINED, 15-3
VARIABLE LENGTH, 152
VAX counted byte strings, 15-2
RECORD_TYPE, 15-1
STREAM, 15-2
UNDEFINED, 15-3
VARIABLE LENGTH, 15-2

Chapter 15. Record Formats

Chapter 16. SFDU Usage 16-1

Chapter 16. SFDU Usage

This standard defines restrictions on the use of Standard Formatted Data Units (SFDUS) in
archive quality data sets. PDS does not require that data products be packaged as SFDUSs.
However, if data products are packaged as SFDUS, the following standards apply.

The Consultative Committee for Space Data Systems (CCSDS) has prepared a recommendation
for the standardization of the structure and construction rules of SFDUs for the inter change of
digital space-related data. An SFDU is a type-length-value object. That is, each SFDU consists
of: atype identifier which indicates the type of data within the SFDU; a length field which eit her
states the length of the data or indicates how the data are delimited; and a value field which
contains the actual data. Both the type and the length fields are included ina20 -byte label, called
an SFDU label in this document. The value field immedia tely follows the 20-byte SFDU Label.
For PDS data products, this value field is the PDS label, including one or more data object
definitions.

There are three versions of SFDUSs. In Version 1, the length of an SFDU is represented in binary.
In Version 2, the length could also be represented in ASCII. In Version 3, the length can be
represented in binary, ASCII, or using one of severa delineation techniques. Unless previously
negotiated, al PDS data products packaged as SFDUs must be constructed using Version 3
SFDU Labels.

A Version 3 SFDU label consists of the following parts:

) Control Authority ID 4 Bytes
2) Verson D 1 Byte
3) ClassID 1 Byte
4) Delimiter Type 1 Byte
5) Spare 1 Byte
6) Description Data Unit ID 4 Bytes
7) Length 8 Bytes

The Control Authority 1D and the Description Data Unit 1D together form an identifier called an
Authority and Description Identifier which points to a semantic (Planetary Science Data
Dictionary, in the PDS case) and syntactic (Object Definition Language, 2.0) description of the
value field. . The Data Description Unit ID varies by data product type. It is supplied by the JPL
Control Authority and is usually documented in the science data product Software Interface
Specifications (S1S).

Version 3 allows delimiting of SFDUs either by end -of-file or by start and end markers rather
than by explicit byte counts. Further details of the SFDU architecture will not be discussed here.
Other sources of information can be found i nthe SFDU References listed in the Introduction to
this document.

16-2 Chapter 16. SFDU Usage

Since archive quality data sets are internaly defined, only a limited set of SFDU labels are used
to identify the files on a data volume in order to simplify not only the archive products
themselves, but also the processing of those products by software. PDS labels are included in the
data products, and the information in these PDS labels are considered more than adequate for
dataidentification and scientific analysis.

PDS does not require SFDU labels in its archive products. However, SFDU labels can be
accommodated in PDS products when they are required by projects or other agencies concerned
in the preparation of the data. The standard use of SFDUs in PDS labels from current missions
and datarestorations is different from the use of SFDUs in data products from upcoming
missions fully supported by the Jet Propulsion Laboratory’s Advanced Multi -Mission Operations
System (AMMOS). The following sections define the standards for including SF DUs in each
case.

Two SFDU organizations are allowed in PDS data products. The first organization (the ZI
Structure) has been used historicaly in PDS data products from restoration and past missions.
The second organization (the ZKI organization) isrequ ired for data products that pass through
the JPL Advanced Multi-Mission Operations System (AMMOS) project database.

16.1 TheZl SFDU Organization

Any PDS data products packaged as SFDUs that are not required to pass through the AMMOS
project database as part of an active mission may use the following SFDU organization.

Each instance of a data product (file) in a data set must include two (and only two) SFDU labels.
These areaZ Class SFDU label and an | Clas s SFDU label. The two SFDU labels are
concatenated (i.e. Z, then I) and left justified in the first line or record of the PDS label for each
dataproduct. (SeeFigure 16.1.) Inthe case of data productswith detached PDS labels, the two
SFDU labels must appear in the first record of the PDS label files and no SFDU labels appear in
the data object files. (See Figure 16.2.)

Z I
PDS LABEL
FILE
END
DATA OBJECT
EOF

Chapter 16. SFDU Usage

16-3

Figure 16.1 Attached PDS Label Example for non-AMMOS compatible products

Z I
FILE PDS LABEL
END EOF
FiLg DATA OBJECT
EOQOF

Describes

Figure 16.2 Detached PDS Label Example for non-AMMOS compatible products

The first SFDU label must be aZ Class Version 3 SFDU label. “Z Class’ indicates that the value
field (everything after the first 20 bytes) is an aggregation. In this case, the aggre gation consists
of only the | Class SFDU. This label also indicates that the delimiter typeis End -of-File and that
this SFDU (data product) isterminated by a single End -of-File. It is formed as follows:

1) Control Authority ID
2) Version ID

3) ClassID
4) Delimiter Type
5) Spare

6) Description Data Unit ID
7) Length Field

Example: CCSD3ZF000010000000!

CCsD

3

z

F

0

0001
00000001

The second SFDU label must be an | Class Version 3 SFDU label. “Class |” indicates that the

16-4

Chapter 16. SFDU Usage

value field (everything after th e second 20 bytes) is application data, i.e., the PDS label and the
data object(s). The Data Description Unit ID of “PDSX” indicates that the data product usesthe
Object Description Language (ODL) syntax and the Planetary Science Data Dictionary

semantics to present descriptive information. This SFDU label aso indicates that the SFDU (data
products) will be terminated by a single End -of-File. It is formed as follows:

1)
2)
3)
4)
5)
6)
7)

Control Authority ID
Verson D

ClassID

Delimiter Type

Spare

Description Data Unit ID
Length Field

NJPL

3

I

F

0

PDSX
00000001

Example: NJPL 3IFOPDSX 0000000l

END <CH= «<LF=

CCSD3ZF0000100000001NJPL3FOPDSX00000001 <CR=> <LF=
PDS_VERSION_ID = PDS3 <CR=> <LF>

RECORD_TYPE = STREAM <CR> <LF=>

RECORDS = 100 <CR= <LF=

DATA OBJECT

EOF

Figure 16.3: SFDU Example

The two SFDU labels are concatenated and left justified in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. See Figure 16.3.

For RECORD _TYPE = STREAM or FIXED _LENGTH or UNDEFINED, the concatenated
SFDU labels must be followed immediately by <CR><LF>. For data products that have
RECORD_TYPE =VARIABLE_LENGTH, the two SFDU labels may not be followed by

<CR><LF>.

STREAM example
FIXED_LENGTH Example

CCSD3ZF000010000000INJPL 31 FOPDSX 0000000l <CR><LF>
CCSD3ZF000010000000INJPL 31 FOPD SX 0000000I<CR><LF>

VARIABLE_LENGTH Example CCSD3ZF0000I0000000INJPL 31 FOPDSX 0000000l

UNDEFNED Example

CCSD3zF000010000000INJPL 31 FOPDSX 0000000I<CR><LF>

Chapter 16. SFDU Usage 16-5

The remainder of the PDS label begins on the next line or record. The last line of the PDS label
contains the END statement. Then, if the PDS Label is attached, the data object begins on the
next record. If the PDS labdl is detached, the END statement isthe last line of the file.

16.2 The ZKI SFDU Organization

Any PDS data products packaged as SFDUs that are required to pass through the AMMO S
project database as part of an active mission must use the following SFDU organization. All data
products of this type are assumed to have attached PDS labels.

Each instance of a data product (file) in a data set must include four (and only four) SFDU

labels. These are: the Z Class SFDU label; the K Class SFDU label; the End-Marker label for the
K Class SFDU; and the | Class SFDU label. The Z and K Class SFDU labels are concatenated
(i.e., Z, then K) and left justified in the first line or record of the PDS label for each data product.
The End-Marker for the K Class SFDU label and the | Class SFDU labe | are right justified on the
last record of the PDS label (following the END statement). See Figure 16.4.

Z K # #
PDS LABEL
FILE END ROK | 1
DATA OBJECT
EOF

Figure 16.4: PDS Label Example for AMMOS compatible products

The first SFDU label must be aZ Class Version 3 SFDU label. The Z Classindicatest hat the
value field (everything after the first 20 bytes) is an aggregation. In this case, the aggregation
consists of aK Class (PDS label) and an | Class (data object) SFDU. This label also indicates
that the delimiter type is End -of-File and that this S FDU (data product) is terminated by asingle
End-of-File. It isformed as follows:

1) Control Authority CCSD
2) Verson ID 3
3) ClassID Z
4) Delimiter Type F
5) Spare 0

6) Description Data Unit ID 0001
7) Length Field 00000001

16-6 Chapter 16. SFDU Usage

Example: CCSD3ZF00001000000 Ol

The second SFDU label must be aK Class Version 3 SFDU label. “Class K” indicates that the
value field (everything after the second 20 bytes) is catalog and directory information, i.e., the
PDS label (sometimes referred to as the K Header). The Data Description Unit 1D of PDSX
indicates that the PDS label uses the Object Description Language (ODL) syntax and the
Planetary Science Data Dictionary semantics to present data descriptive information. The SFDU
label aso indicates that the SFDU is delimited b y a Start-Marker/End-Marker pair. It isformed
asfollows:

1) Control Authority ID NJPL

2) Verson ID 3

3) ClassID K

4) Delimiter Type S

5) Spare 0

6) Description Data Unit ID PDSX

7) Length Field #Hmark#H

The marker pattern (“##mark##’ in the example) ¢ an be set to any string that is unlikely to be
repeated elsewhere in the data product.

Example: NJPL 3K SOPD SX##mark###

The two SFDU labels must be concatenated and left justified in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. For data products with
RECORD_TY PE equa to VARIABLE_LENGTH, the two concatenated SFDU labels must not
be followed by <CR><LF>.

Example: CCSD3ZF000010000000INJPL 3K SOPD SX##mark##

The remainder of the PDS label beginson the next line. The last line of the PDS label contains
the END statement. Then, in the same line or record, right justified, isthe End -Marker for the K
Class SFDU and the | Class SFDU label. The End -Marker pattern must appear as.

Example CCSD$$MARKER##mark##

Note that the start marker and the end marker fields must be identical within the SFDU (in the
example, “#Hmark##’). Next must be an | Class Version 3 SFDU label. “Class |” indicates that
the value field (everything after the SFDU label) is appli cation data, i.e., the data object. The
Data Description Unit 1D varies by data product type. It is supplied by the JPL Control Authority
and is usually documented in the science data product Software Interface Specifications (S1S).
The SFDU label aso indicates that the SFDU will be terminated by a single End -of-File. It is
formed as follows:

Chapter 16. SFDU Usage 16-7

1) Control Authority ID NJPL
2) Verson D 3
3) ClassID I
4) Delimiter Type F
5) Spare 0
6) Description Data Unit ID XXXX
7) Length Field 00000001
Example: NJPL 31F001060000000l (where XX XX has been replaced by 0106.)

The two SFDU labels must be concatenated, right justified, and appear in the last line or record
of the PDS label following the END statement. (If it happens that there are not 40 bytes left in
the last record of the PDS label, add an additional record and right justify the two SFDU labels.)
Note that there are no characters between the two SFDU labels, and that the marker pattern and |
Class SFDU Labels are transparent to PDS label processing softw are.

Examplee END CCSD$$MARK ER##mark##NJPL 31 F001060000000I

The data object begins with the next physical record.

16.3 Examples

RECORD_TYPE = STREAM:
End Statement blank(s) End marker | Class SFDU End of record

END CCSD$$MARK ER##tmark##NJPL 31 FO010600000001<CR><LF>

RECORD_TYPE =FHXED_LENGTH:
End Statement Terminator Record Boundary

END <CR><LF> bbbbb CCSD$$M ARK ER##mark##NJPL 31F0010600000001

RECORD_TYPE = UNDEFINED:
Statement terminator

End Statement
END<CR><LF> CCSD$$M ARK ER#mark##NJPL 31 F0010600000001

16-8 Chapter 16. SFDU Usage

RECORD_TYPE =VARIABLE_LENGTH:
Record Length END end of statement

END CCSD$$MARKER##mMark##NJPL 3| F0010600000001

16.4 Exceptionstothis Standard
Software files and document files should not be packaged as SFDU s,

Previous versions of the PDS standards expressed the ZI SFDU labels as an OD L statement. The
ZI SFDU labels were followed by “= SFDU_LABEL".

Example: CCSD3ZF0000100000001NJPL 3IFOPDSX 00000001 = SFDU_LABEL

Chapter 16. SFDU Usage 16-9

END statements, 16-5
Standard Formatted Data Unit (SFDU)
AMMOS usage, 16-5
definition, 16-1
examples
FIXED_LENGTH file, 16-7
STREAM file, 16-7
UNDEFINED file, 16-7
VARIABLE LENGTH file, 16-8
exceptions, 16-8
| class, 16-2, 16-5
K class, 16-5
usage in PDS products, 16-1
versions, 16-1
Z class, 16-2, 16-5

Chapter 17. Usage of N/A, UNK, and NULL 17-1

Chapter 17. Usage of N/A, UNK and NULL

17.1 Interpretation of N/A, UNK, and NULL

During the completion of data product labels or catalog files, one or more values may not be
available for some set of required data elements. In this case PDS provides the symbolic literals
“N/A”, “UNK”, and “NULL", each of which is appropriate under different circumstances.

17.1.1 N/A

“N/A” (“Not Applicable”) indicates that the values within the domain of this data element are
not applicable in thisinstance. For example, a data set catalog file describing NAIF SPK kernels
would contain the line:

| NSTRUMENT ID = "N A"
because this data set is not associated with a particular instrument.

“N/A” may be used as needed for data elements of any type (i.e., text, date, numeric, etc.).

17.1.2 UNK

“UNK” (“Unknown”) indicates that the value for the data element is not known and never will
be. For example, in a data set comprising a series of images, each taken wit h a different filter,
one of the labels might contain the line:

FI LTER_NAME = " UNK"

if the observing log recording the filter name was lost or destroyed and the name of the filter is
not otherwise recoverable.

“UNK” may be used as needed for data elements of any type.

17.1.3 NULL

“NULL” isused to flag values that are temporarily unknown. It indicates that the data preparer
recognizes that a specific value should be applied, but that the true value was not readily
available. “NULL" isap laceholder. For example, the line:

DATA_SET_RELEASE DATE = " NULL"

might be used in a data set catalog file during the development and review process to indicate
that the release date has not yet been determined.

17-2 Chapter 17. Usage of N/A, UNK, and NULL

Notethat all “NULL” indicators should b e replaced by their actual values prior to fina archiving
of the associated data.

17.2 I mplementation Recommendations for N/A, UNK, and NUL L

The figurative constants defined above require special values fo r storage in data base systems.
The PDS has the following recommendations for software intended to support PDS labels and
catalog objects:

1. Inthe case of character fields, the explicit string can be stored in the corresponding data
elements without further modification. This approach can also be taken where date and
time data types are stored as strings.

2. Numeric fields require specia flag valuesto represent the “N/A”, “NULL” and “UNK”
indicators. Table 17.1 provides suggested standard flag values for each case.

In creating index files based on element values extracted from PDS labels, there are two options
for dealing with “N/A”, “NULL", and “UNK” in non -string columns:

1. The character strings can be used explicitly in the index. Note, however, that inthis case
the DATA_TY PE of the column may be forced to “* CHARACTER”, since, for example,
encountering the string “NULL” in what is otherwise a numeric column would cause a
read failure.

2. The character strings can be replaced with an appropriate numeric constant. Inthis case
the substitution is indicated in the corresponding column definition by including the
NOT_APPLICABLE_CONSTANT, NULL_CONSTANT or UNKNOWN_CONSTANT
elements as needed.

Table 17.1: Numeric valuesfor N/A, UNK, NULL

Signed Signed Unsigned Unsigned Tiny Integer Real

I nteger I nteger I nteger I nteger (1 byte -

(4 byte) (2 byte) (4 byte) (2 byte) unsigned)
N/A -2147483648| -32768 4294967293 | 65533 locally defined -1.E32
UNK 2147483647 || 32767 4294967294 | 65534 locally defined +1.E32
NULL NULL* NULL* NULL* NULL* NULL* NULL*

?? “NULL” refersto a system-defined null value. The availability of NULL as a universal value across data
types in some data management systems simplifies the implementation of the figurative constant "NULL".
However, if asystem "null” is not available, then either a) an arbitrary value can be chosen, or b) the

Chapter 17. Usage of N/A, UNK, and NULL 17-3

meanings of UNK and NULL can be combined and the token or numeric representat ion of UNK used.

17-4

N/A constant, 17-1

Not Applicable constant, 17-1
NULL constant, 17-1

UNK constant, 17-1
Unknown constant, 17-1

Chapter 17. Usage of N/A, UNK, and NULL

Chapter 18. Units of Measurement 18-1

Chapter 18. Units of Measurement

The uniform use of units of measure facilitates broad catalog searches across archive
systems.The PDS standard system for units, where applicable, isthe Systeme Internationale
d'Unites (SI). The default units for data elementsin the Planetary Science Data Dictionary
(PSDD) are determined as each element is defined and added to the dictionary. Specific unit
definitions are also i ncluded in the PSDD.

In cases where more than one type of unit is commonly used for a given data element, an
additional data element is provided to explicitly identify the corresponding unit.
SAMPLING_PARAMETER_RESOLUTION and SAMPLING_PARAMETER_UNIT are one
such pair. The PDS allows exceptions to the Sl unit requirement when common usage conflicts
with the SI standard (e.g., angles which are measured in degrees rather than radians).

Both singular and plural unit names, as well as unit symbols , are allowed. The double asterisk
(**) isused, rather than the caret (*), to indicate exponentiation. When the units associated with
avalue of aPDS element are not the same as the default units specified in the PSDD (or when
explicit units are preferred), a unit expression is used with the value. These unit expressions are
enclosed in angular brackets (< >) and follow the value to which they apply.

Examples

EXPOSURE_DURATI ON 10 <SECONDS>

DECLI NATI ON = -14. 2756 <DEGREES>
MASS = 123 <kg>

MASS DENSI TY = 123 <g/cnm*3>
MAP_RESCLUTI ON = 123 <Pl XEL/ DEGREE>
MAP_SCALE = 123 <KM PI XEL>

Note that in the above example, MASS_DENSITY is not expressed in the S| default unit of
measurement for density (kg/m**3).

PDS recommends (in order of preference) that measurements be expressed using the default Sl
units of measurements, as defined in the following paragraphs. If it isn ot desirable to use the
default SI unit of measurement, then the unit of measurement should be expressed using the S|
nomenclature defined in the following paragraphs. If a unit of measurement is not defined by the
Sl standard, then a unit of measurement ¢ an be derived (e.g., pixels per degree, kilometers per
pixel, etc.).

18.1 Sl Units

The following summary of Sl unit information is extracted from The International System of
Units.

Base units — As the system is currently used, there are seven fundamenta Sl units, termed “base

18-2

Chapter 18. Units of Measurement

units’:
QUANTITY NAME OF UNIT SYMBOL
length meter m
mass kilogram kg
time second S
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

Sl units are all written in mixed case; symbols are also mixed case except for those derived from
proper names. No periods are used in any of the symbolsin the international system.

Derived units — In addition to the base units of the system, ahost of derived units, which stem
from the base units, are also employed. One class of these is formed by adding a prefix,
representing a power of ten, to the base unit. For example, akilometer is equal to 1,000 meters,
and amillisecond is .001 (that i s, 1/1,000) second. The prefixes in current use are as follows:

Sl PREFIXES
Factor Prefix Symbol Factor Prefix Symbol
10**18 exa E 10%*-1 deci d
10**15 peta P 10%*-2 centi c
10%*12 tera T 10**-3 milli m
10**9 giga G 10**-6 micro
10**6 mega M 10**-9 nano n
10%*3 kilo k 10%*-12 pico p
10%*2 hecto h 10**-15 femto f
10**1 deka da 10**-18 atto a

Note that the kilogram (rather than the gram) was selected as the base unit for mass for historical
reasons. Notwithstanding, the gram is the basis for creating mass units by addition of prefixes.

Another class of derived units consists of powers of base units and of base units in algebraic

relationships. Some of the more familiar of these are the following:

QUANTITY NAME OF UNIT SYMBOL
area square meter m**2
volume cubic meter m**3
density kilogram per cubic meter kg/m**3
velocity meter per second m/s
angular velocity radian per second rad/s
acceleration meter per second squared m/s**2

Chapter 18. Units of Measurement

18-3

angular acceleration radian per second squared rad/s**2
kinematic viscosity square meter per second m**2/s
dynamic viscosity newton-second per square meter N*g/m**2
luminance candela per square meter cd/m**2
wave number 1 per meter m**-1
activity (of aradioactive source) 1 per second sk*-1
Many derived Sl units have names of their own:
QUANTITY NAME OF UNIT SYMBOL EQUIVALENT
frequency hertz Hz sk*-1
force newton N kg*m/s**2
pressure (mechanical stress) pascal Pa N/m**2
work, energy, quantity of heat joule J N*m
powe watt W Js
quantity of electricity potential difference coulomb C A*s
electromotive force volt \% WIA
electrical resistance ohm - VIA
capacitance farad F A*s/V
magnetic flux weber Wh V*s
inductance henry H V*gA
magnetic flux density teda T Wh/m* * 2
luminous flux lumen Im cd*sr
illuminance lux Ix m/m**2
Supplementary units are as follows:
QUANTITY NAME OF UNIT SYMBOL
plane angle radian rad
solid angle steradian s

Use of figureswith S units —In the international system it is considered preferable to use only
numbers between 0.1 and 1,000 in expressing the quantity associated with any Sl unit. Thus the
quantity 12,000 metersis expressed as “12 km”, not “12,000 m”. So too, 0.003 cubic centi meters
is preferably written “3 mm®”, not “0.003 cm™”.

18-4

SAMPLING_PARAMETER_RESOLUTION, 18-1
SAMPLING_PARAMETER_UNIT, 18-1
Systeme Internationale dUnites (Sl), 18-1
units of measure, 18-1
default units, 18-1
Sl prefixes, 18-2
Sl units, 18-1
supplementary units, 18-3
symbols, 18-1

Chapter 18. Units of Measurement

Chapter 19. Volume Organization and Naming 19-1

Chapter 19. Volume Organization and Naming

The Volume Organization and Naming Standard defines the organization of data sets onto
physical media and the conventions for forming volume names and identifiers. A volumeis one
unit of aphysical medium such asa CD, aDVD, or a magnetic tape. Data sets may reside on one
or more volumes and multiple data sets may aso be stored on a single volume. Volumes are
grouped into volume sets.

Each volume has a directory structure containing subdirectories and files. Both random access
(CD, DVD) and sequential access (magnetic tape) media are supported. A PDS volume on a
sequential access medium has avirtual directory structure defined in the VOLUME object
included in the file*VOLDESC.CAT”. Thisvirtual structure may then be used to recreate the
volume directory structure when the files are moved to a random access medium.

PDS recommends that the entire contents of an archive volume and volume set be based on a
single version of the PDS Standards Reference. Software tools that work with one version of the
Standards may not work with all versions.

19.1 Volume Set Types

Data may be organized into one of four types of archive volumes, based on the number of data
sets on each volume and the number of volumes required to capture all the data. The directory
organization of the volumes and the required files varies sightly depending on this volume type.
Figures 19.1 through 19.4 depict the various volume directory structure options. The four volume
types are described below.

1. One data set on one volume. This basic volume organization isillustrated in Figure 19.1.
The required and optional files and directories are detailed in Section 19.3.

2. Onedata set on many volumes. In this case the INDEX subdirectory includes both local
indices, for the data on the present volume, and cumulative indices, for the data on al
(preceding) volumes. Thislayout isillustrated in Figure 19.2.

3. Many data sets on one volume. In this case, additional file naming conventions are
imposed to prevent collisions; data subdirectories are organized by data set. There are
two variations on this scheme:

a Onelogical volume—That is, the data sets collected on the physical medium
constitute asingle logica volume and would generally be distributed together.
See Figures 19.3a and 19.3b, and Section 19.6 for more information on logical
volumes.

b. Many logical volumes— and The physical medium contains several largely
independent collections of data sets, with each collection organized as though it
were on its own volume. Thisis useful when alarger capacity medium (say,
DVD) isbeing used to hold severa volumes originally produced on asmaller

19-2 Chapter 19. Volume Organization and Naming

capacity medium (e.g., CD-ROM). In this case, directories that are common to
and identical on all volumes need only be reproduced once (e.g., the SOFTWARE
directory in Figure 19.3b). See Figures 19.3a and 19.3b, and Section 19.6 for
more information on logical volumes.

4. Many data sets on many volumes. This organization is most useful when several large
data sets are being produced in parallel over an extended period of time (as with some
gpace missions). Sections of each data set appear on each physical volume, requiring
additional naming considerations. See Figure 19.4 for more information.

Note that it is possible to have one or more volumes containing only data accompanied by an
ancillary volume containing the DOCUMENT, CATALOG, GAZETTER, SOFTWARE,
CALIB, and GEOMETRY directories relevant to al the other volumes. When thisis done, the
PDS requires that al files referenced by include-type pointers (see the Pointer Usage chapter in
this document) be present on the data volume. The PDS recommends that ancillary files be
archived on the same volume as the corresponding data wherever possible, to facilitate science
access.

The contents and organization of the directories of al the volume types are described in the
remainder of this chapter.

Chapter 19. Volume Organization and Naming 19-3
VOLUME SET ORGANIZATION STANDARD
ONE DATA SET, ONE VOLUME
ROOT
ARREADME.TXT
ERRATA.TXT*
VOLDESC.CAT
DOCUMENT CATALOG LABEL SOFTWARE CAlLiB GEOMETRY INDEX DATA EXTRAS
DOCINFO.TXT CATINFO.TXT | agINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT INDXINFO.TXT ~ LABELFILET |
CATALOG.CAT"" |NCLUDE FILE 1 INDEX.LBL DATA FILE 1 EXTRINFO.TXT
MISSION.CAT INCLUDE FILE 2 INDEX.TAB LABEL FILE 2
INSTHOST.CAT DATA FILE 2
INST.CAT LABELED DATA FILE 1
DATASET.CAT LABELED DATA FILE 2
PERSON.CAT LABELED DATA FILE 3
REF.CAT INCLUDE FILE 1 *
INCLUDE FILE 2 *

x0xINFO.TXT Required for each non-data subdirectory if present
* Optional
** Individual catalog files are preferred, or they may be combined in a single CATALOG.CAT file.

Figure 19.1 Volume Set Organization Standard - One Data Set, One Volume

194 Chapter 19. Volume Organization and Naming

VOLUME SET ORGANIZATION STANDARD
ONE DATA SET, MANY VOLUMES

ROOT

ARREADME.TXT

ERRATA.TXT"

VOLDESC.CAT

DOCUMENT CATALOG LABEL SOFTWARE CAL||B GEOMETRY INDE|E)(DA‘|I'A 1 DATA 2
[| | LABEL FILE 1 |
CATINFO.TXT | ABINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT
DOCINFO.TXT CATALOG.CAT** INCLUDE FILE 1 DATAFILE 1

MISSION.CAT |\NCLUDE FILE 2 LABEL FILE 2
INSTHOST.CAT DATA FILE 2
INST.CAT LABELED DATA FILE 1
DATASET.CAT LABELED DATA FILE 2
PERSOMN.CAT LABELED DATA FILE 3
REF.CAT INCLUDE FILE 1 *

INCLUDE FILE2 *

xxxxINFO.TXT Required for each non-data subdirectory if present
* Optional
** Individual catalog files are preferred, or they may be combined in a single CATALOG.CAT file.

Figure 19.2 Volume Set Organization Standard - One Data Set, Many Volumes

Chapter 19. Volume Organization and Naming 19-5

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE VOLUME

ROOT
ARREADME.TXT
ERRATA.TXT"
VOLDESC.CAT
| | | | | DATASET 1 EXTRAS
DOCUMENT CATALOG LABEL SDFT\I\iARE CALIB GEOMETRY INDEX
DOCINFO.TXT CATINFO.TXT .. LABINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT INDXINFO.TXT
CATALOG.CAT™ a5, TABLE.FMT axxCALIB.TAB axxINDEX.LBL
MISSION.CAT T ABLE. FMT bxxCALIB.TAB I axxINDEX.TAB
INSTHOST.CAT bxxINDEX LBL
]ngé\,cé;.r bxxINDEX. TAB
axx .
bxxDS.CAT EXTRINFO.TXT
PERSON.CAT |
RERGAT DATA11 DATA12
LABEL FILE 1
DATA FILE 1
LABEL FILE 2
xxxxINFO.TXT Required for each non-data subdirectory if present DATA FILE 2
* Optional LABELD DATA FILE 1
** Individual catalog files are preferred, or they may be combined in a single CATALOG.CAT file. LABELED DATA FILE 2
LABELED DATA FILE 3
INCLUDE FILE 1
INCLUDE FILE 2

Figure 19.3a Volume Set Organization Standard - Many Data Sets, One Volume

19-6 Chapter 19. Volume Organization and Naming
VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE PHYSICAL VOLUME,
MANY LOGICAL VOLUMES
ROOT
ARREADME.TXT
ERRATA.TXT"
VOLDESC.CAT
| | |
DATASET 1 ** DATASETn™* SOFTWARE ***
| |
AAREADME.TXT AAREADME.TXT et
ERRATA.TXT* ERRATA.TXT"
| | i l
CATALOG LABEL SOFTWARE GEOMETRY
DOCUMENT DATA
CALIB INDEX EXTRAS
| 1] |
DOCUMENT LABEL CALIB INDEX EXTRAS
CATALOG SOFTWARE GEOMETRY DATA
* Optional

** Logical volume; directory structure identical to Figure 19.1, ONE DATA SET, ONE YOLUME
*** Common to all logical volumes

Figure 19.3b Volume Set Organization Standard - Many Data Sets, One Physical Volume,
Many Logical Volumes

Chapter 19. Volume Organization and Naming 19-7

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, MANY VOLUMES

ROOT
ARREADME.TXT
ERRATA.TXT*
VOLDESC.CAT
| ‘ | | | | | DATASET EXTRA
DOCUMENT CATALOG LABEL SOFTWARE CALIB GEOMETRY INDEX s
DOCINFO.TXT CATINFO.TXT LABINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT INDEXINFO.TXT
CATALOG.CAT"" axxTABLE.FMT1 axxCALIB.TAB axxINDEX.LBL
MISSION.CAT bxxTABLE.FMT1 bxxCALIB.TAB ‘ axxINDEX.TAB
INSTHOST.CAT axxCMIDX.LBL
lNS;SCS,:T axxCMIDX.TAB
axxDS. bxxINDEX.LBL EXTRINFO.TXT
bxxDS.CAT bxxINDEX.TAB
PERSON.CAT bxxCMIDX.LBL ‘
REF.CAT bxxCMIDX.TAB DATA 11 DATA 2
LABEL FILE 1
DATA FILE 1
LABEL FILE 2
DATA FILE 2

xxxxINFO.TXT Required for each non-data subdirectory if present
* Optional
** Individual catalog files are preferred, or they may be combined in a single CATALOG.CAT file.

LABELD DATAFILE 1
LABELED DATA FILE 2
LABELED DATA FILE 3
INCLUDE FILE 1
INCLUDE FILE 2

Figure 19.4 Volume Set Organization Standard - Many Data Sets, Many Volumes

19.2 Volume Organization Guidelines

The PDS recommends that directory structures be simple, path names short, and directory and
file names constructed in alogica manner. When determining the number of filesto be stored in
each subdirectory, data preparers should keep in mind that most usersrely on visual inspection to
glean the contents of a directory or confirm that a disk isintact. Note that some older operating
systems will “crash” when encountering a directory containing more than 128 files. Note also
that device load time can be directly dependent on the number of filesin a directory, making
large directories inconvenient for large numbers of users. The typical practical limit for these
purposes is on the order of 100 files per directory. As afurther convenience to users, PDS
recommends that empty subdirectories be omitted entirely.

19.3 Description of Directory Contents and Organization

Theroot directory is the top-level directory of avolume. The following sections describe the
contents of the root directory, followed by the contents of the required subdirectories (in
alphabetical order), and finally the contents of the optional directories (in alphabetical order).

19-8 Chapter 19. Volume Organization and Naming

19.3.1 ROOT Directory Files
AAREADME.TXT Required

Thisfile contains an overview of the contents and organization of the associated volume, general
instructions for its use, and contact information. The name has been chosen so that it will be
listed first in an alphabetical directory listing. See Appendix D for an example of an
AAREADME.TXT file.

VOLDESC.CAT Required

Thisfile contains the VOLUME object, which gives a high-level description of the contents of
the volume.

ERRATA.TXT Optional
Thisfile identifies and describes errors and/or anomalies found in the current volume, and

possibly in previous volumes of a set. When a volume contains known errors they must be
documented in thisfile.

VOLDESC.SFD Obsolete

Thisfileisidentified here only for backward compatibility with previous versions of the PDS
standards. It is not to be used in current archive products.

Thisfile contains the SFDU reference object structure that aggregates the separate file contents
of the volume into an SFDU. The reference object itself is expressed in ODL. Thisfile should
only be included if the data products are packaged as SFDUs. (Note the “.SFD” file extension is
areserved file extension in the CCSDS SFDU standard indicating the file contains avalid
SFDU.)

19.3.2 Required Subdirectories

19.3.2.1 CATALOG Subdirectory

This subdirectory contains the catalog object files (for the mission, instrument, data sets, etc.) for
the entire volume. When several logical volumes are present on a single physical volume, each
logical volume should have its own CATALOG subdirectory.

CATINFO.TXT Required
Thisfileidentifies and describes the function of each filein the CATALOG subdirectory.

CATALOG.CAT Optional

Chapter 19. Volume Organization and Naming 19-9

In most cases, the individual catalog objects are in separate files, one for each object. On some
older archive volumes, however, all catalog objects were collected into asingle file called
CATALOG.CAT.

PDS Methodology for Supplying Catalog Objects

The preferred method for supplying catalog objects is as separate files for each catalog object,
since this facilitates the review, verification and archiving process. In Figure 19.5, for example,
the files axxoxxDS.CAT and bxxxxxDS.CAT represent two separate files each containing single
data set catal og objects (descriptive information about the data set) for data setsa and b
respectively. See the File Specification and Naming chapter in this document for the file naming
rules; see Section A.5, CATALOG, for the required contents of the catalog object, and see
Appendix B for information on each of the referenced catalog objects.

When catalog objects are organized in separate files or sets of files, pointer expressions shall be
constructed according to the following table. Under "File Name", the first line shows thefile
name to be used if asingle catalog file is present on the volume for the particular type of catalog
object named. The second shows the syntax and file name convention to be followed if multiple
catalog files are present for the named object.

Catalog Pointer Name File Name

"DATA_SET_CATALOG = "DATASET.CAT"

= {"xxxxxxDS.CAT","yyyyyyDS.CAT"}
ADATA_SET_COLLECTION_CATALOG = "DSCOLL.CAT"

= {"xxxxxDSC.CAT","yyyyyDSC.CAT"}
"DATA_SET_MAP_PROJECTION_CATALOG = "DSMAP.CAT"

= {"xxxDSMAP.CAT","yyyDSMAP.CAT"}
NINSTRUMENT_CATALOG = "INST.CAT"

= {"xXxxXINST.CAT","yyyyINST.CAT"}
AINSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"

= {"xxxxHOST.CAT","yyyyHOST.CAT"}
"MISSION_CATALOG = "MISSION.CAT"

= {"xXxxxxMSN.CAT","yyyyyMSN.CAT"}
APERSONNEL_CATALOG = "PERSON.CAT"

= {"XxxXPERS.CAT,"yyyyPERS.CAT"}
"REFERENCE_CATALOG = "REF.CAT"

= {"xxxxxREF.CAT","yyyyyREF.CAT"}
ASOFTWARE_CATALOG = "SOFTWARE.CAT"

= {"XxxSW.CAT", "yyySW.CAT"}
ATARGET_CATALOG = "TARGET.CAT"

{"XXXTGT.CAT", "yyyTGT.CAT"}

19.3.2.2 Data Subdirectory

The DATA subdirectory may be used to unclutter the root directory of avolume by providing a
single entry point to multiple data subdirectories. These directories contain the data product files.
The directories are organized and named according to the standards in Chapter 8, Directory
Types and Naming, in this document. Subdirectories may be nested up to eight levels deep on a
physical volume.

19-10 Chapter 19. Volume Organization and Naming

Data Files

A datafile contains one or more data objects, which is a grouping of data resulting from a
scientific observation (such as an image or table) and representing the measured instrument
parameters.

Labdl Files

A labdl file contains a detached PDS label that identifies, describes, and defines the structure of
the data objects. The associated data objects are contained in an accompanying datafile. The
label file must have the same base name as the associated data file, with an extension of “.LBL".

L abeled Data Files
PDS labels may be attached directly to the data they describe. In this case the PDS label comes
first and the data begin immediately following the end of the label. When attached |abels are

used, no “.LBL" fileswill be present in the data directories. See the Data Products and Data
Product Labels chapters in this manual for details.

19.3.2.3 INDEX Subdirectory

This directory contains the indices for al data products on the volume.,

Note: If the physical volumeis organized as several logical volumes (case 3b of Section 19-1),
there will generally not be an INDEX subdirectory at the root of the physical volume. Instead
there will beindividual INDEX subdirectories at the root of each logical volume. See Section
A.20, INDEX_TABLE, for more information.

INDXINFO.TXT Required

Thisfileidentifies and describes the function of each filein the INDEX subdirectory. This
description should include at |east:

1) A description of the structure and contents of each index table in this subdirectory

2) Usage notes
For an example of the INDXINFO.TXT file, see Appendix D, Section D.2.
INDEX.LBL Required
Thisisthe PDS label for the volume index file, INDEX.TAB. The INDEX_TABLE specific

object should be used to identify and describe the columns of the index table. See Appendix A for
an example. Although INDEX.LBL isthe preferred name for thisfile, the name axxINDEX.LBL

Chapter 19. Volume Organization and Naming 19-11

may also be used (with axx replaced by an appropriate mnemonic).

Note: The PDS recommends detached labels for index tables. If an attached label is used, thisfile
is omitted.

INDEX.TAB Required

Thisfile contains the volume index in tabular format (i.e., the INDEX_TABLE specific object is
used to identify and describe the data stored on an archive volume). Only data product label files
(i.e., not the data files) are included in an index table. In rare cases, however, ancillary files are
also included. Although INDEX.TAB isthe preferred name for thisfile, the name
axxINDEX.TAB may also be used, with axx replaced by an appropriate mnemonic.

Note that the axx prefix is neither required nor recommended. Data producers may use a prefix to
distinguish two or more files by data set, instrument, or other criteria. The data producer should
replace the generic prefixes shown here with a suitable mnemonic.

The following files are recommended for multi-volume sets:
CUMINDEX.LBL Optional

Thisfile contains the cumulative volume set index in tabular format (i.e., the INDEX_TABLE
specific object is used to identify and describe the data stored on each archive volume). Only
data product label files (i.e., not the data files) are included in an index table. In rare cases,
however, ancillary files may be included. Although CUMINDEX.LBL isthe preferred name for
thisfile, the name axxCMIDX.LBL may also be used, with axx replaced by an appropriate
mnemonic.

PDS recommends the use of detached labels for index tables. If an attached label is used, thisfile
is omitted.

CUMINDEX.TAB Optional

Thisfile contains the cumul ative volume set index in atabular format. Normally only datafiles
areincluded in acumulative index table. In some cases, however, ancillary files may be
included. Although CUMINDEX.TAB isthe preferred name for thisfile, the name
axxCMIDX.TAB may also be used, with axx replaced by an appropriate mnemonic.

19.3.3 Optional Subdirectories

19.33.1 CALIBration Subdirectory

This directory contains the calibration files used in the processing of the raw data or needed to
use the data products on the volume. Note that “CALIB” isonly arecommended name - a
different directory name may be used if appropriate.

19-12 Chapter 19. Volume Organization and Naming

CALINFO.TXT Required
Thisfileidentifies and describes the function of each filein the CALIB subdirectory.
Calibration Files Required

In Figures 19.3 and 19.5, the filesaxxCALIB.TAB and bxxCALIB.TAB represent sample files.
The axx and bxx prefixes indicate that the calibration files for different data sets (a and b) may be
combined in the same CALIB subdirectory.

Note that the axx and bxx prefixes in the sample names are neither required nor recommended.
Data producers may use them to distinguish two or more files (by data set, instrument, or other
criteria). Also, in thiscasethe “CALIB” file nameisnot required. It isused in the figuresto
differentiate calibration files from observational datafiles. The data producer should replace the
generic file names shown here by suitably mnemonic names.

19.3.3.2 DOCUMENT Subdirectory

This directory contains the files that provide documentation and supplementary and ancillary
information to assist in understanding and using the data products on the volume. The
documentation may describe the mission, spacecraft, instrument, and data set(s). It may include
references to science papers published elsewhere as well an entire papers republished on the
volume. See Section A.12, DOCUMENT, for more information.

DOCINFO.TXT Required
Thisfileidentifies and describes the function of each filein the DOCUMENT subdirectory.
VOLINFO.TXT Optional

This file describes the attributes and contents of the volume. This file is sometimes included in
addition to the catalog files in the CATALOG subdirectory to provide the same information in an
aternate format.

Note: In rare cases, the data engineer may allow the data preparer to place al the corresponding
catalog object descriptionsin the VOLINFO.TXT file of the DOCUMENT subdirectory in lieu
of separate filesin the CATALOG subdirectory. Regardless of which method is used, the
descriptions themsel ves must always be supplied.

19.3.3.3 EXTRAS Subdirectory

The EXTRAS directory is the designated area for housing additional elements provided by data
preparers beyond the scope of the PDS archive requirements. Examples include HTML-based
disk navigators, educational and public interest aids, and other useful but nonessential items.
The PDS places no restrictions on the contents and organization of this subdirectory other than

Chapter 19. Volume Organization and Naming 19-13

conformance to 1SO-9660/UDF standards.
EXTRINFO.TXT Required

Thisfileidentifies and describes the function of each filein the EXTRAS subdirectory. This
description should include at least the following:

1. A description of the structure and contents of each file in the subdirectory
2. Usage notes

19.3.34 GAZETTER Subdirectory

This directory contains detailed information about all the named features on atarget body (i.e.,
the gazetteer information) associated with the data sets on the volumes. “Named features’ are
those the International Astronomical Union (IAU) has named and approved. See Section A.15,
GAZETTER_TABLE, for more information.

GAZINFO.TXT Required

Thisfile identifies and describes the function of each file in the GAZETTER subdirectory.

19-14 Chapter 19. Volume Organization and Naming

GAZETTER.TXT Required

Thisfile contains text describing the structure and contents of the gazetteer table in
GAZETTER.TAB.

GAZETTER.LBL Required
Thisfileisthe PDS label containing aformal description of the structure of the gazetteer table.
GAZETTER.TAB Required

Thisfile contains the gazetteer table.

19.3.35 GEOMETRY Subdirectory

This directory contains the files (e.g., SEDR file, SPICE kernels, etc.) needed to describe the
observation geometry for the data. Note that “GEOMETRY” is only arecommended directory
name, another appropriate name may be used.

GEOMINFO.TXT Required

Thisfileidentifies and describes the function of each filein the GEOMETRY subdirectory.

19.3.3.6 LABEL Subdirectory

This directory contains additional PDS labels and include files that were not packaged with the
data products or in the data subdirectories. When multiple logical volumes reside on asingle
physical volume, the LABEL subdirectories must appear below the logical volume root
directories. Thisis because the rules governing pointer resolution preclude a search across
logical volumes.

LABINFO.TXT Required
Thisfile identifies and describes the function of each file in the LABEL subdirectory.
Include Files Required

Include files are files referenced by a pointer in aPDS label. Typically they contain additional
metadata or descriptive information. Only files of type LBL, TXT, or FMT (“format”) may be
included in the LABEL subdirectory. In Figures 19.1-5, the files axxi NCLUDE FILE1,
bxxINCLUDE FILE1 and INCLUDE FILEL1 represent sample files of the above types. The axx
and bxx prefixes indicate that the include files for different data sets (a and b) may be combined
in the same LABEL subdirectory.

Note that the axx and bxx prefixes in the sample names are neither required nor recommended.
Data producers may use them to distinguish two or more files (by data set, instrument, or other

Chapter 19. Volume Organization and Naming 19-15

criteria). The data producer should replace the generic prefixes shown here by a suitable
mnemonic.

19.3.3.7 SOFTWARE Subdirectory

This directory contains the software libraries, utilities, or application programs supplied for
accessing or processing the data. It may also include descriptions of processing agorithms. Only
public domain software may be included on PDS archive volumes.

Two subdirectory structures are available for organizing the SOFTWARE directory: platform-
based and application-based. Platform-based is the recommended method for general archives
and is described below. For an example of application-based organization see the example for
SOFTINFO.TXT in Appendix D of this document, and the NAIF directory structure in Appendix
E. See Section 11.3 for information about packaging software for inclusion in an archive
product.

SOFTINFO.TXT Required
Thisfile identifies and describes the function of each file in the SOFTWARE subdirectory.
SRC Subdirectory Optional

There can be aglobal SRC directory under the SOFTWARE directory if there is source code
applicableto al platforms. For example, application-programming languages such as IDL are
relatively platform independent and would be placed in a global SRC directory. Note that in the
example below, there is both aglobal source directory as well as source directories at the lower
levels.

DOC Subdirectory Optional
This directory contains documentation for the software in the parallel SRC directory.

LIB Subdirectory Optional
This directory contains libraries applicable to al platforms.

Har dwar e Platform and Oper ating System/Environment Subdirectories Optional

If only global source code is being provided on the volume, no further organization is required. If
platform- or environment- specific software is being provided, the structure in Figure 19.6
should be followed. Specifically:

1. The hardware platform and the operating system/environment must be explicitly stated.
If more than one operating system/environment (OS/Env) is supported for asingle
hardware platform, each should have its own subdirectory under the hardware directory.
If thereisonly one, then that subdirectory can be promoted to the hardware directory
level (vianaming conventions). In Figure 19.6, severa environments are supported for

19-16 Chapter 19. Volume Organization and Naming

platform HW1, but only one for HW2 — thus the difference in subdirectory structures.

2. Thenext directory level contains BIN, SRC, DOC, LIB and OBJ. If any of these are not
applicable, it should be left out (i.e., empty directories should be omitted).

3. Following are examples of subdirectory names for both multiple and single OS/Env per
platform. (Thislist is provided for illustration only. It is not meant to be exhaustive.)

Multiple Single
PC

DOS PCDOS
WIN PCWIN
WINNT PCWINNT
OS2 PCOS2
MAC

SYS? MACSY S7
AUX MACAUX
SUN

SUNOS SUNOS
SOLAR SUNSOLAR
VAX

VMS VAXVMS
ULTRX VAXULTRX
Gl

IRX4 SGIIRX4

IRXS5 SGIIRX5

Chapter 19. Volume Organization and Naming 19-17

SOFTWARE

SOFTINFO.TXT

<HW1> <HW2> <SRC>* <DOC>*
—t
<0sl> <0s2> <0S3> BIN SRC DOC LIB OBJ

BIN SRC DOC LIB OBJ

* NOTE: INFO.TXT files under SOFTWARE subdirectories are optional (e.g., PCINFO.TXT,
MACINFO.TXT, VAXINFO.TXT, SUNINFO.TXT, etc.).

Figure 19.6 — Platform-based SOF TWARE Subdirectory Structure

19.4 Volume Naming

V olume names must be no more than 60 characters in length and in upper case. They should
describe the contents of the volume in terms that a human user can understand. In most cases the
volume name is more specific than the volume set name. For example, the volume name for the
first volume in the VOYAGER IMAGES OF URANUSvolume set is“VOLUME 1.
COMPRESSED IMAGES 24476.54 - 26439.58.”

19.4.1 VolumelD

Many types of media and the machines that read them place alimit on the length of the volume
ID. Therefore, although the complete volume set ID should be placed on the outside label of the
volume, a shorter version is actually used when the volume is recorded. PDS has adopted a limit
of 11 charactersfor these terse volume identifiers. This volume ID consists of the last two
components of the volume set ID, with the “X” wildcard values replaced by the sequence
number associated with the particular volume (see the Volume Set ID Standard below). This ID
must always be unique for PDS data volumes. The volume ID must be in upper case.

Examples:
VG_0002 Volume 2 of the Voyager set
MG_0001 The first volume of the Magellan set

VGRS 0001 A potential Voyager Radio Science collection

19-18 Chapter 19. Volume Organization and Naming

If avolume is redone because of errorsin the initial production the volume ID should remain the
same and the VOLUME_VERSION _ID incremented. This parameter is contained in the
VOLDESC.CAT file on the volume. The version ID should aso be placed on the external
volume label as“Version n” where n indicates the revision number. A revision number greater
than one indicates that the original volume should be replaced with the new version.

19.5 Volume Set Naming

The volume set name provides the full, forma name of a group of data volumes containing one
or acollection of related data sets. Volume set names may be at most 60 charactersin length and
must be in upper case. Volume sets are normally considered a single orderable entity. For
example, the volume series MISSION TO VENUS consists of the following volume sets:

MAGELLAN: THE MOSAIC IMAGE DATA RECORD
MAGELLAN: THE ALTIMETRY AND RADIOMETRY DATA RECORD
MAGELLAN: THE GLOBAL ALTIMETRY AND RADIOMETRY DATA RECORD

PRE-MAGELLAN RADAR AND GRAVITY DATA SET COLLECTION

In certain cases, the volume set name can be the same as the volume name, e.g., when the
volume set consists of only one volume.

1951 VolumeSet ID

A volume set is a series of archive volumesthat are closely related. In general, the volumes of a
set will be distributed and used together. Each volume within the set must have aVOLUME_ID
that is unique across the PDS archive. The volume set isidentified by aVOLUME_SET ID of
up to 60 characters incorporating the range of constituent VOLUME_IDs. VOLUME_SET _IDs
must be in upper case, and are composed by concatenating the following fields, separated by
underscores, using abbreviations if necessary:

The country of origin (abbreviated)

The government branch

The discipline within the branch that is producing the volumes

A campaign, mission or spacecraft identifier followed by an optional instrument or
product identifier (6 characters)

A 4-digit sequence identifier: The first digit(s) represent the volume set; the
remaining digits contain “ X", representing the range of volumesin the set. Up to
four “X” characters may be used.

ApODNPRE

o

Example

USA_NASA PDS GO_10XX could be the volume set ID for the Galileo EDR volume set, since
there are less than 100 volumes (since the XX placeholder accommodates the range 01 - 99
only). Volume IDs for volumes in the set would then be GO_1001, GO_1002, €tc.

Chapter 19. Volume Organization and Naming 19-19

Note: Because of the uniqueness constraint, data preparers should consult with their PDS data
engineer when it comes time to formulate new VOLUME_ID and VOLUME_SET _ID values.

Volume Set IDs Prior to PDS Version 3.2

Prior to version 3.2, the 4-digit sequence identifier (item 5 above) did not include the “X”
wildcards. Instead, the last digits represented the volume. For example, on Magellan, avolume
set ID “USA_NASA JPL_MG_0001" was used only for the volume with the volume ID
“MG_0001". Subsequent volumes in the same set had volume set IDs that differed in the final
field. When a set of volumes wasto be distributed as one logical unit, the volume set ID
included the range of volume IDs.

Example

USA_NASA PDS VG 0001 TO VG _0003 for the three volumes that comprise the VVoyager
Uranus volume set.

19.6 Logical Volume Naming

Logical volumes retain the volume and volume set naming used at the physical volume level. For
further information, see the “Volume Object” in Appendix A of this document.

19.7 Exceptionsto This Standard

In rare cases volume IDs are subject to restrictions imposed by specific hardware or software
environments. Also, volumes made in the past may have IDs that do not meet this standard and
there may be compelling reasons for keeping the same volume ID when making a new copy of
the data. All new data sets, however, must adhere to this standard wherever possible.

19-20 Chapter 19. Volume Organization and Naming

| A |

AAREADME.TXT 19-8
ancillary files 19-2
ancillary volume 19-2
Hél#
CALIB subdirectory 19-11
calibration files 19-11
calibration subdirectory 19-11
CALINFO.TXT 19-12
catalog object files 19-8
catalog objects
how to supply 19-9
CATALOG subdirectory 19-8, 19-12
CATALOG.CAT 19-8, 19-9
CATINFO.TXT 19-8
catalog pointer 19-9
CUMINDEX.LBL 19-11
CUMINDEX.TAB 19-11
cumulative index 19-11
{%
datafiles
contents 19-10
DATA subdirectory 19-9
19-7

DOCINFO.TXT 19-12
DOCUMENT subdirectory 19-12

19-8

19-8

19-10

19-12

19-12

19-2 Chapter 19. Volume Organization and Naming

19-12

19-13

19-13

19-14

19-14

19-14

19-15

19-15
%
ERRATA.TXT 19-8
EXTRAS subdirectory 19-12
EXTRINFO.TXT 19-13
Hél#
gazetteer table 19-14
GAZETTER subdirectory 19-13
GAZETTER.LBL 19-14
GAZETTER.TAB 19-14
GAZETTER.TXT 19-14
GAZINFO.TXT 19-13
GEOMETRY subdirectory 19-14
GEOMINFO.TXT 19-14
é
includefiles 19-14
INDEX subdirectory 19-10
INDEX.LBL 19-10
INDEX.TAB 19-10
INDEX_TABLE 19-10
INDXINFO.TXT 19-10
Hél#
label files

contents 19-10

LABEL subdirectory 19-14

Chapter 19. Volume Organization and Naming 19-3

LABINFO.TXT 19-14
logical volumes
multiple logical volumes (definition) 19-1
naming 19-19
single logical volume (definition) 19-1
%
19-1
| P |
physical media
organization 19-1
pointers
catalog 19-9
%
ROOT Directory Files 19-8
“élé
SOFTINFO.TXT 19-15
SOFTWARE subdirectory 19-15
“élé
target
named features 19-13
“élé
19-16
VOLDESC.CAT 19-8, 19-18
VOLDESC.SFD 19-8
VOLINFO.TXT 19-12
volume
ancillary volumes 19-2
definition 19-1
IDs 19-17
exceptions 19-19
logical volume naming 19-19
names 19-17
VOLUME 19-8

volume index 19-11

19-4

volume organization and naming
volume set
definition
IDs
names
organization
many data sets, many volumes
many data sets, one physical volume
many data sets, one volume
one data set, many volumes
one data set, one volume
recommendations
types
volume set
organization
many data sets, one volume
VOLUME_ID
VOLUME_SET_ID
VOLUME_VERSION_ID

19-17
19-17
19-18
19-18
19-1

19-1
volumes, logical

Chapter 19. Volume Organization and Naming

19-1

19-1
19-18
19-18

19-2, 19-7
19-6
19-1
19-1, 194
19-1, 19-3
19-7
19-1

19-5
19-18
19-18
19-18

19-10

Chapter 20. Zip Compression 20-1

Chapter 20. Zip Compression

The PDS standards support two different approaches to data compression:

1. Inone case, adataobject contains numbers that have been encoded using one of severa
supported methods (e.g., “Huffman first difference”) . In this approach, the label describes
the compressed data and the ENCODING_TY PE keyword indicates how the data object
isto be decompressed by the user. PDS standards support this approach to compression
for IMAGE objectsonly. For more information on compression of individual IMAGE
objects, see Section A.19.

2. Inthe alternative approach, a standard compression method called “Zip” isused. Inthis
case, an entire datafile is compressed rather than a particular data object. The user is
expected to apply an “Unzip” utility to decompress the file, and the label then describes
the decompressed data directly.

This chapter describes PDS standards for archiving datausing Zip compression. In generdl, the
archiving of datain a compressed format should be used sparingly. Although compression
reduces the number of physical volumes, it makes the data more difficult for usersto interpret.
PDS recommends that data compression be used only in limited situations, such asto compress
very large and infrequently used data, or to archive processed data where the source product is
readily available in a non -compressed PDS archive.

20.1 Zip Software

The Zip method was chosen because the algorithm and supporting software for all mgjor
platforms are available without charge to the general user community. The Info-Zip Consortium
and Info-Zip working group, for example, provide information and software at these URLs:

http://www.info-zip.or g/pub/infozip
http://www.fr eesoftwar e.com/pub/infozip

This same information is available on line from PDS at:

http://pds.jpl.nasa.gov

20.2 Zip File Labels

When archiving datain Zip format, two files need to be considered: (1) the zip file itself, and (2)
the data file produced by decompressing the zip file. PDS strongly recommends that these two
files have the same name but different extensions. “.ZIP” for the zip file and a more descriptive
extension (e.g., “.DAT” or “.IMG") for the unzipped file. The“.ZIP" file extension is reserved
exclusively for zip-compressed files within the PDS.

20-2 Chapter 20. Zip Compression

PDS does not recommend the practice of compressing multiple data files into a single zip file,
unless those files reside in the same directory and have the same name, but different extensions.
For example, if file“ ABC.IMG” contains an image and file “ ABC.TAB” contains a table of
additional information relevant to that image, then both files can be archived in thefile
“ABC.ZIP’. Thiswill minimize the potential confusion for a user who may not be able to locate
adesred file because it is hidden inside a zip file with a different name.

Like al PDS datafiles, both the zipped and the unzipped datafilesr equire labels. Both files
must be described by a single, detached PDS label file using the combined -detached |abel
approach (see Section 5.2.2). Attached labels are not permitted for Zip -compressed data,
because the user must be able to examine the label before deciding whether or not to decompress
thefile. Inacombined -detached label, each individual file is described as a FILE object. Hereis
the general framework:

PDS_VERSI ON_I D = PDS3
DATA SET_ID = ...
PRODUCT_I D = ...
(other paraneters relevant to both Zi pped and Unzipped fil es)
OBJECT = COWPRESSED FI LE
(paraneters describing the conpressed file)
END_OBJECT = COWPRESSED FI LE
OBJECT = UNCOWPRESSED FI LE
(paraneters describing the first unconpressed file)
END_OBJECT = UNCOWPRESSED FI LE
OBJECT = UNCOWPRESSED FI LE
(paraneters describing a second unconpressed file, if present)
END_OBJECT = UNCOWPRESSED FI LE
END

Thefirst FILE object, the COMPRESSED _FILE, refersto the zipped file; additional FI LE
objects, called UNCOMPRESSED _FILEs, refer to the decompressed data file(s) that the user
will obtain by unzipping the first.

The zip file is described viaa“ minima label " (see Section 5.2.3). The following keywords are
required:

FI LE_NAME = nane of the zipfile
RECORD _TYPE = UNDEFI NED

ENCODI NG_TYPE = ZIP

| NTERCHANGE _FORVAT = Bl NARY

a list of the nanes of all the files archived
inthe zipfile

approxi mate total nunber of bytes in the data
files

a brief description of the zipfile format

UNCOVPRESSED _FI LE_NAME

REQUI RED_STORAGE_BYTES

DESCRI PTI ON

Chapter 20. Zip Compression 20-3

Typically, the DESCRIPTION is given as a pointer to afile called “ZIPINFO.TXT ” found in the
DOCUMENT directory on the same volume.

The subsequent UNCOMPRESSED_FILE object(s) contain complete descriptions of the data
files obtained by unzipping the zip file.

20.3 Packaging Zip Archives on Volumes

A volume containing zip files with combined-detached labels as presented above conformsto al
established PDS standards provided both the zip file and its constituent data files are archived.
The unique feature of a Zip-compressed PDS archive volume is that only the zip files appear; the
UNCOMPRESSED _FILE objects described by the labels are not present on the volume, but can
be obtained by unzipping the zip files provided.

In the interests of long-term archiving, a PDS archive zip file must include al th e support files
required to completely reconstitute the labeled data files. Specifically, the zipped archive must
include not only the data files, but also the label file(s) for the uncompressed data. |dedlly, any
FMT files referenced by "STRUCTURE keywords in the labels should aso be included in the
zip file.

Note: These additional .LBL and .FMT files do not need to be described by
UNCOMPRESSED_FILE objectsin the label, because PDS label and format files never require
labels. Furthermore, the sizes of these files do not need to be included in the value of the
REQUIRED_STORAGE_BY TESkeyword. However, the names of these files do need to be
included in the list of UNCOMPRESSED FILE NAME values.

20.4 Label Example
The following is an example of a PDS label for a Zip -compressed data file.

PDS_VERSI ON_| D PDS3

DATA SET_ID = "HST- S- WFPC2- 4- RPX- V1. 0"
SOURCE_FI LE_NAME = "U20N0101T. SHF"
PRODUCT_TYPE = OBSERVATI ON_HEADER

PRODUCT_CREATI ON_TI ME 1998-01-31T12: 00: 00

CBJECT = COWPRESSED FI LE
FI LE_NAME = "0101_SHF. Z| P"
RECORD_TYPE = UNDEFI NED
ENCODI NG_TYPE =ZIP
I NTERCHANGE_FORVAT = Bl NARY
UNCOVPRESSED FI LE_NAME = {"0101_SHF. DAT", "0101_SHF. LBL"}
REQUI RED_STORAGE_BYTES = 34560
ADESCRI PTI ON = "ZI PI NFO TXT"

END_OBJECT = COWPRESSED FI LE

CBJECT = UNCOMPRESSED _FI LE
FI LE_NAME = "0101_SHF. DAT"
RECORD_TYPE = FI XED_LENGTH

20-4

RECORD_BYTES
FI LE_RECORDS
FI TS_HEADER
"HEADER _TABLE

Chapter 20. Zip Compression

2880

12

(" 0101_SHF. DAT",
(" 0101_SHF. DAT",

1 <BYTES>)
25921 <BYTES>)

OBJECT = FI TS_HEADER
HEADER TYPE = FITS
| NTERCHANGE _FORMAT = ASCI |
RECORDS =7
BYTES = 20160
ADESCRI PTI ON = "FI TS. TXT"
END_OBJECT = FI TS_HEADER
OBJECT = HEADER TABLE
NAME = HEADER PACKET
| NTERCHANGE _FORMAT = Bl NARY
ROWNS = 965
COLUWNS =1
ROW BYTES =2
DESCRI PTI ON = "This is the HST standard header packet
cont ai ni ng observation parameters. It is
stored as a sequence of 965 two-byte
integers. For nore detailed information,
contact Space Tel escope Science Institute.”
OBJECT = COLUW
NAME = PACKET_VALUES
DATA _TYPE = MSB_I| NTEGER
START_BYTE =1
BYTES =2
END_OBJECT = COLUW
END_OBJECT = HEADER TABLE
END_OBJECT = UNCOWPRESSED FI LE
END

20.5 ZIPINFO.TXT Example

While the ZIPINFO.TXT fileis not required, it is strongly recommended that this file be
included as part of the process of documenting the contents of azip file. Thefollowingisan
example ZIPINFO.TXT file and the type of information that should be included in the
ZIPINFO.TXT file:

PDS_VERSI ON_I D = PDS3
RECORD_TYPE = STREAM
OBJECT = TEXT
PUBLI CATI ON_DATE = 1999-07- 26
NOTE = "This file provides an overview of the ZIP
file format."
END_OBJECT = TEXT

Chapter 20. Zip Compression 20-5

END

Many of the files in this data set are conpressed using Zip fornat.
They are all indicated by the extension ".ZIP'. ZIPis a utility that
conpresses files and also allows for multiple files to be stored in a
single Zip archive. You will need the UNZIP utility to extract the
files.

The SOFTWARE directory on this volume contains a conplete description
of the Zip file format and al so the conplete source code for the UNZI P
utility. The file format and file deconpression algorithns are
described in the file SOFTWARE/ APPNOTE. TXT.

It is far sinpler to obtain a pre-built binary of the UNZIP application
for your platform Binaries for nost platforns are available fromthe
Info-ZIP web site, currently at these URLs:

http://ww. i nfo-zip.org/pub/infozip
http://ww. freesoftware. com pub/infozip

The same information can al so be found a the PDS Central Node's web
site, currently at:

http://pds.jpl. nasa. gov/

20.6 Additional Files

As of thiswriting, Zip appears to be arobust standard with along future of general use.
Nevertheless, PDS long-term archiving goals reach well past the lifetime of many popular
standards, past and present. For thisreason, any volume containing zip filesis required to
contain a complete description of the zip file format with sample “Unzip” source code. This
information must be located in an appropriate subdirectory of the SOFTWARE directory tree.
The required text and source code may be obtained directly from the Info-Zip web site or by
contacting a Central Node data engineer.

20-6

COMPRESSED_FILE, 20-2
data compression, 20-1
Zip, 20-1
example, 20-3
file format, 20-1
on archive volumes, 20-3
DOCUMENT subdirectory, 20-2
ENCODING_TYPE, 20-1
FILE object, 20-2
IMAGE objects
compression, 20-1
minimal labels
and compressed data, 20-2
REQUIRED STORAGE BYTES, 263
UNCOMPRESSED_FILE, 20-2
UNCOMPRESSED FILE NAME, 20-3
Zip compression, 20-1
ZIPINFO.TXT, 20-2, 20-4

Chapter 20. Zip Compression

Appendix A. PDS Data Object Definitions A-1

Appendix A. PDS Data Object Definitions

This section provides an a phabetical reference of approved PDS data object definitions used for
labeling primary and secondary data objects. The definitions include descriptions, lists of
required and optional keywords, lists of required and optional subobjects (or child objects), and
one or more examples of specific objects. For a more detailed discussion on primary and
secondary data objects, see the Data Products chapter in this document.

Data object definitions are refined and augmented from time to time, as user community needs
arise, so object definitions for products designed under older versions of the Standards may differ
significantly. To check the current state of any object definition, consult a PDS data engineer or
either of these URLS:

PDS Catalog Search: ~ http://pdsproto.jpl.nasa.gov/onlinecatal og/top.cfm

Data Dictionary Search: http://pdsproto.jpl.nasa.gov/ddcolstdval/newdd/top.cfm

The examples provided in this Appendix are based on both existing and planned PDS archive
products, modified to reflect the current version of the PDS Standards. Additional examples may
be obtained by contacting a PDS Data Engineer.

NOTE: Any keywords in the Planetary Science Data Dictionary may also be included in a
specific data object definition.

Primitive Objects

There exist four primitive data objects: ARRAY; BIT_ELEMENT; COLLECTION; and
ELEMENT. Although these objects are available, they should only be used after careful
consideration of the current high-level PDS Data Objects. Please see the PDS Objects chapter in
this document for guidelines on the use of primitive objects.

A-2 Appendix A. PDS Data Object Definitions
Chapter Contents
Appendix A. PDS Data Object DefiNitioNS.........ccoveiiiererere s A-1
N R N B N F SRS A-3
A.2 ARRAY (Primitive Data ObJECE)coureeieieieriesie s A-4
G R = 1 I B O @ LU 1 N OSSR A-8
A4 BIT ELEMENT (Primitive Data ObjeCt)ccceoererieerierieiniesieee e A-11
AL CATALOG.....oeeeee ettt sttt b ettt b e et ae e e e ne e nes A-12
A.6 COLLECTION (Primitive Data ODJECL)ccerererieriirierieeeeee e A-15
N A O @ | LU 1 SRS A-16
A8 CONTAINER.. ...ttt b et nes A-20
A9 DATA_PRODUCER......coi ittt e A-27
A.10 DATA_SUPPLIER ...ttt s A-29
A.1Ll DIRECTORY ..ottt sttt sttt st s e et b et sb e be e e nesbesee e enesee e eneneenes A-31
A.12 DOCUMENT .ottt sttt et ae st e s e s A-33
A.13 ELEMENT (Primitive Data OBJECL)cccooiiiiiiiriiiieieree e A-36
S | I SRS A-38
A.15 GAZETTEER TABLE.....o et A-42
ALE HEADER ...t et A-52
A.LT7 HISTOGRAM ...ttt sttt bbb et a et et eneneenes A-54
A.L8 HISTORY oottt b ettt b e e e bt e e e e s A-57
AL IMAGE. ..ttt ne ettt e s A-61
A.20 INDEX_TABLE ..ottt A-66
A R N I I I TS A-71
A.22 QUBE...... o ettt bbbt e ettt ne e nes A-74
A .23 SERIESt A-82
A.24 SPECTRUM ..ottt sttt A-87
A.25 SPICE KERNELooiiiiiiie ettt A-90
A28 TABLE. ... bbbt A-93
N I = G LSS A-114
A28 VOLUME.. ...ttt ettt bbb e e sne e A-116
A.29 WINDOW ...ttt ettt ettt s b e bbb e st e e e b et e eneeneneas A-123

Appendix A. PDS Data Object Definitions A-3

Al ALIAS

The ALIAS object provides a method for identifying alternate terms or names for approved data
elements or objects within adata system. The ALIAS object is an optional sub-object of the
COLUMN object.

A.1l.1 Required Keywords

1. ALIAS_NAME
2. USAGE_NOTE

A.1.2 Optional Keywords

Any

A.1l.3 Required Objects

None

A.1.4 Optional Objects

None

A.l5 Example

The following label fragment shows the ALIAS object included as a sub-object of a COLUMN:

OBJECT = COLUWN
NANVE = ALT_FOOTPRI NT_LONG TUDE
START_BYTE =1
DATA TYPE = REAL
BYTES = 10
OBJECT = ALI AS

ALl AS_NANME = AR_LON
USAGE_NOTE = "MAGELLAN M T ARCDR SI S"

END_OBJECT = ALI AS

END_OBJECT = COLUWN

A-4 Appendix A. PDS Data Object Definitions

A.2 ARRAY (Primitive Data Object)

The ARRAY abject is provided to describe dimensioned arrays of homogeneous objects. Note
that an ARRAY may contain only a single sub-object, which can itself be another ARRAY or
COLLECTION if required. A maximum of 6 axesisallowed in an ARRAY . By default, the
rightmost axisis the fastest varying axis.

The optional “AXIS *” elements are used to describe the variation between successive objects
inthe ARRAY. Valuesfor AXIS ITEMSand “AXIS *” elements for multidimensional arrays
arelisted in axis order. The optional START_BY TE data element provides the starting location
relative to an enclosing object. If aSTART_BY TE is not specified, avaue of 1 is assumed.

A.21 Required Keywords

1. AXES
2. AXIS_ITEMS
3. NAME

A.2.2 Optional Keywords

1. AXIS INTERVAL

2. AXIS NAME

3. AXIS UNIT

4. AXIS_START

5. AXIS STOP

6. AXIS ORDER TYPE

7. CHECKSUM

8. DESCRIPTION

9. INTERCHANGE FORMAT
10. START BYTE

A.23 Required Objects
None

Note that while no specific sub-object is required, the ARRAY object must contain at least one
of the optional objects, following. That is, anull ARRAY object may not be defined.

Appendix A. PDS Data Object Definitions

A.24 Optional Objects

ARRAY
BIT_ELEMENT
COLLECTION
ELEMENT

El Ol

A.25 Examplel

Following is an example of atwo-dimensional spectrum array in adetached label.

PDS_VERSI ON_| D
RECORD_TYPE
RECORD BYTES
FI LE_RECORDS

DATA SET_ID
OBSERVATI ON_I D
TARGET_NAME

| NSTRUVENT _HOST_NAME

| NSTRUVENT _NANVE
PRODUCT I D

OBSERVATI ON_TI ME
START_TI ME

STOP_TI ME

PRODUCT _CREATI ON_TI ME
A ARRAY

/* Description of Object

OBJECT
NANE
| NTERCHANGE _FORVAT
AXES
AXI S_| TEMB
AXI S_NAME
AXIS UNIT
AXI S_I NTERVAL
AXI S_START

OBJECT
DATA _TYPE
BYTES
NAVE
DERI VED_NMAXI MUM
DERI VED_M NI MUM
OFFSET

in Fi

PDS3

FI XED_LENGTH
1600

180

"I HW C- SPEC- 2- EDR- HALLEY- V1. 0"

"704283"

"HALLEY"

"1 HW SPECTROSCOPY AND SPECTROPHOTOMVETRY
NETWORK"

"1 HW SPECTROSCOPY AND SPECTROPHOTOVETRY"
"704283"

1986- 05- 09T04: 10: 20. 640Z

1986- 05- 09T04: 07: 50. 640Z

UNK

1993-01-01T0O0: 00: 00. 000Z

" SPEC2702. DAT"

le */

ARRAY
"2D SPECTRUM'

Bl NARY

2

(180, 800)

("RHO', " APPROXI MATE WAVELENGTH")
(ARCSEC, ANGSTROMB)

(1.5,7.2164)

(1.0, 5034. 9)

ELEMENT
VBB_| NTEGER
2

COUNT

2. 424980E+04
0. 000000E+00
0. 000000E+00

A-6

A.2.6

SCALI NG_FACTOR
NOTE

END_OBJECT
END_OBJECT
END

Example 2

Appendix A. PDS Data Object Definitions

1. 000000E+00

"Conversion factor 1.45 may be applied
to data to estimate photons/sq

nm sec/ angstrom at 6800 angstromns."
ELEMENT

ARRAY

The following label shows ARRAY, COLLECTION and ELEMENT primitive objects all used
together.

PDS_VERSI ON_I D
RECORD_TYPE
RECORD_BYTES

FI LE_RECORDS

~ARRAY

DATA SET_ID
TARGET_NAVE

SPACECRAFT_NANME

| NSTRUVENT _NAVE

PRODUCT | D

START_TI MVE

STOP_TI ME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

NCTE

OBJECT
NAVE
| NTERCHANGE_FORIVAT
AXES
AXI S_I| TEMS
DESCRI PTI ON

OBJECT
NAVE
BYTES
DESCRI PTI ON

OBJECT
NAVE
BYTES
DATA _TYPE
START_BYTE

PDS3

FI XED_LENGTH
122

7387

"M SCHAO1. DAT"

"VEGAL- C- M SCHA- 3- RDR- HALLEY- V1. 0"
HALLEY

"VEGA 1"

" MAGNETOVETER!

" UNK"

" UNK"

" UNK"

" UNK"

"VEGA 1 M SCHA DATA'

ARRAY

M SCHA DATA_FI LE

Bl NARY

1

7387

"This file contains an array of fixed-
Il ength M scha records.”

COLLECTI ON

M SCHA RECORD

122

"Each record in this file consists of a
time tag foll owed by a 20-el enent array
of magnetic field vectors.™

ELEMENT
START_TI ME
2

MSB_| NTEGER
1

Appendix A. PDS Data Object Definitions

END_OBJECT

OBJECT
NANE
AXES
AXI S_| TEMB
START_BYTE
AXI S_NAME
AXIS UNIT
AXI S_I NTERVAL
DESCRI PTI ON

OBJECT
NANE
BYTES
DATA TYPE
START_BYTE
END_OBJECT
END_OBJECT

END_OBJECT

END_OBJECT
END

A-7

ELEMENT

ARRAY

MAGNET! C_FI ELD_ARRAY

2

(3, 20)

3

(" XYZ_COVPONENT", "TI ME")

("N A" , " SECOND")

("N A" , 0.2)

"Magnetic field vectors were recorded at
the rate of 10 per second. The
START_TIME field gives the tinme at
which the first vector in the record
was recorded. Successive vectors were
recorded at 0.2 second intervals."

ELEMENT

MAG_FI ELD_COVPONENT _VALUE
2

VBB_| NTEGER

1

ELEMENT

ARRAY

CCOLLECTI ON

ARRAY

A-8 Appendix A. PDS Data Object Definitions

A.3 BIT_COLUMN

The BIT_COLUMN object identifies a string of bits that do not fall on even byte boundaries and
therefore cannot be described as a distinct COLUMN. BIT_COLUMNs defined within columns
are analogous to columns defined within rows.

Notes:

(1) The Planetary Data System recommends that al fields (within new objects) be defined on
byte boundaries. This precludes having multiple values strung together in bit strings, as
occursin the BIT_COLUMN object.

(2) BIT_COLUMN isintended for use in describing existing binary data strings, but is not
recommended for use in defining new data objects because it will not be recognized by
most general purpose software.

(3) A BIT_COLUMN must not contain embedded objects.

BIT_COLUMNS of the same format and size may be specified asasingle BIT_COLUMN by
using the ITEMS, ITEM_BITS, and ITEM_OFFSET elements. The ITEMS data element is used
to indicate the number of occurrences of abit string.

A.3.1 Required Keywords

NAME

BIT_DATA_TYPE

START_BIT

BITS (required for BIT_COLUMNSs without items)
DESCRIPTION

agrwbdPE

A.3.2 Optional Keywords

BIT_MASK

BITS (optional for BIT_COLUMNSswith ITEMS)
FORMAT

INVALID_CONSTANT

ITEMS

ITEM_BITS

ITEM_OFFSET

MINIMUM

. MAXIMUM

0. MISSING_CONSTANT

ROoO~NoOA~WNE

Appendix A. PDS Data Object Definitions

11. OFFSET

12. SCALING_FACTOR

13. UNIT

A.3.3 Required Objects
None

A.3.4 Optional Objects
None

A.35 Example

The label fragment below was extracted from a larger example which can be found under the
CONTAINER object. The BIT_COLUMN object can be a sub-object only of a COLUMN
object, but that COLUMN may itself be part of a TABLE, SPECTRUM, SERIES or

CONTAINER object.

OBJECT
NAVE
DATA _TYPE
START_BYTE
BYTES
VALI DM NIl MUM
VALI D_NMAXI MUM
DESCRI PTI ON

OBJECT
NANVE
Bl T_DATA TYPE
START BI T
BI TS
M NI MUM
MAXI MUM
DESCRI PTI ON

END_OBJECT

COLUWN
PACKET | D
LSB_BI T_STRI NG
1

2
0
7
"Packet id constitutes one of three
parts in the primary source information
header applied by the Payl oad Data
System (PDS) to the MOLA telenetry
packet at the time of creation of the

packet prior to transfer frane
creation.”

Bl T_COLUWN

VERS| ON_NUMBER
MSB_UNSI GNED_| NTEGER
1

3
0
7
"These bits identify Version 1 as the
Source Packet structure. These bits

shall be set to '000'."
Bl T_COLUWN

A-10 Appendix A. PDS Data Object Definitions

OBJECT = BI T_COLUWN
NAVE = SPARE
Bl T_DATA TYPE = MSB_UNSI GNED | NTEGER
START BIT =4
BITS =1
M NI MUM =0
MAXI MUM =0
DESCRI PTI ON = "Reserved spare. This bit shall be set
to'o0" "
END_OBJECT = BI T_COLUWN
OBJECT = BI T_COLUWN
NAVE = FLAG
Bl T_DATA TYPE = BOOLEAN
START BI T =5
BITS =1
M NI MUM =0
MAXI MUM =0
DESCRI PTI ON = "This flag signals the presence or
absence of a Secondary Header data
structure within the Source Packet.
This bit shall be set to '0" since no
Secondary Header formatting standards
currently exist for Mars Cbserver."
END_OBJECT = BI T_COLUWN
OBJECT = BI T_COLUWN
NANVE = ERROR_STATUS
Bl T_DATA TYPE = MSB_UNSI GNED | NTEGER
START BI T =6
BITS =3
M NI MUM =0
MAXI MUM =7
DESCRI PTI ON = "This field identifies in part the
i ndi vi dual application process within
t he spacecraft that created the Source
Packet data."
END_OBJECT = BI T_COLUWN
OBJECT = BI T_COLUWN
NAVE = I NSTRUVENT I D
Bl T_DATA TYPE = MSB_UNSI GNED | NTEGER
START BI T =9
BITS =8
M NI MUM = "NA"
MAXI MUM = "NA"
DESCRI PTI ON = "This field identifies in part the
i ndi vi dual application process within
t he spacecraft that created the Source
Packet data. 00100011 is the bit
pattern for MOLA. "
END_OBJECT = BI T_COLUWN
END_OBJECT = COLUWN

Appendix A. PDS Data Object Definitions A-11

A.4 BIT ELEMENT (Primitive Data Object)

Under review.

A-12 Appendix A. PDS Data Object Definitions

A5 CATALOG

The CATALOG object is used within aVVOLUME object to reference the completed PDS high-
level catalog object set. The catalog object set provides additional information related to the data
setson avolume. Pleaserefer to the File Specification and Naming chapter in this document for
more information.

A51 Required Keywords

None

A.5.2 Optional Keywords

1. DATA_SET_ID
2. LOGICAL_VOLUME_PATHNAME
3. LOGICAL_VOLUMES

A53 Required Objects

DATA_SET
INSTRUMENT
INSTRUMENT_HOST
MISSION

El Ol

A.5.4 Optional Objects

DATA_SET_COLLECTION
PERSONNEL
REFERENCE

TARGET

E Ol

A55 Example

The example below isaVOLDESC.CAT file for avolume containing multiple data sets. In this
case, the catalog objects are provided in separate files referenced by pointers.

PDS_VERSI ON_I D = PDS3
LABEL_REVI SI ON_NOTE ="1998-07-01, S. Joy (PPI);"
RECORD_TYPE = STREAM

Appendix A. PDS Data Object Definitions

OBJECT
VOLUVE_SERI ES_NAVE
VOLUVE_SET_NAME

VOLUVE_SET_ I D
VOLUMES
VOLUVE_NANE

VOLUVE_I D
VOLUVE_VERSI ON_| D
VOLUVE_FORMAT

MEDI UM _TYPE

PUBLI CATI ON_DATE
DESCRI PTI ON

DATA SET_ID

OBJECT
| NSTI TUTI ON_NANE
FACI LI TY_NANME

A-13

VOLUME

"VOYAGERS TO THE QUTER PLANETS"
"VOYAGER NEPTUNE PLANETARY PLASNA

| NTERACTI ONS DATA"

USA NASA PDS VG 1001

1

"VOYAGER NEPTUNE PLANETARY PLASNA

| NTERACTI ONS DATA"

VG 1001

"VERSI ON 1"

"1 SO 9660"

1992-11-13

"This volune contains a collection of
non-i magi ng Pl anetary Pl asnma dat asets
fromthe Voyager 2 spacecraft encounter
with Neptune. |Included are datasets
fromthe Cosnmic Ray System (CRS),

Pl asma System (PLS), Plasma Wave System
(PW5), Planetary Radi o Astronony (PRA),
Magnet oneter (MAG, and Low Energy
Charged Particle (LECP) instrunents, as
wel | as spacecraft position vectors
(POS) in several coordinate systens.
The vol unme al so contai ns docunentati on
and index files to support access and
use of the data."

{"V&2- N CRS- 3- RDR- D1- 6SEC- V1. 0",
"VG&2- N- CRS- 4- SUVWM D1- 96SEC- V1. 0",
"VG&2- N- CRS- 4- SUW D2- 96SEC- V1. 0",
"V@&2- N- LECP- 4- SUMVt SCAN- 24SEC- V1. 0",
"V@&2- N- LECP- 4- RDR- STEP-12. 8M N- V1. 0",
"VG2- N- MAG 4- RDR- HG- COORDS- 1. 92SEC- V1. 0",
"VG2- N- MAG 4- SUVM HG- COORDS- 48SEC- V1. 0",
"VG2- N- MAG 4- RDR- HG- COORDS- 9. 6SEC- V1. 0",
"VG2- N- MAG 4- SUVM NLSCOORDS- 12SEC- V1. 0",
"V@&2- N- PLS- 5- RDR- 2PROVAGSPH- 48SEC- V1. 0",
"V@&2- N- PLS- 5- RDR- ELEMAGSPHERE- 96SEC- V1. 0",
"V@&2- N- PLS- 5- RDR- | ONMAGSPHERE- 48SEC- V1. 0",
"V@&2- N- PLS- 5- RDR- | ONLMODE- 48SEC- V1. 0",
"V@&2- N- PLS- 5- RDR- | ONMMODE- 12M N- V1. 0",
"VGE2- N- PLS- 5- RDR- | ON- | NBNDW ND- 48SEC- V1. 0",
"VG&2- N- POS- 5- RDR- HGHGCOORDS- 48SEC- V1. 0",
"VG2- N- POS- 5- SUVM NLSCOORDS- 12- 48SEC- V1. 0",
"V@&2- N- PRA- 4- SUMM BROWSE- SEC- V1. 0",
"V@&2- N- PRA- 2- RDR- Hl GHRATE- 60M5- V1. 0",
"VG&2- N- PW5- 2- RDR- SA- 4SEC- V1. 0",
"VG2- N- PW&- 4- SUMM SA- 48SEC- V1. 0",
"VQ&2- N- PW&- 1- EDR- WWFRM 60MS- V1. 0"}

DATA_PRODUCER
"UNI VERSI TY OF CALI FORNI A, LOS ANGELES"
"PDS PLANETARY PLASNMA | NTERACTI ONS NODE"

A-14 Appendix A. PDS Data Object Definitions

FULL_NAVE
DI SCI PLI NE_NANME
ADDRESS_TEXT

"DR. RAYMOND ALKER'
" PLASMA | NTERACTI ONS"
" UCLA

| GPP

LOS ANGELES, CA 90024 USA"
DATA_PRODUCER

END_OBJECT

OBJECT
| NSTI TUTI ON_NANE
FACI LI TY_NANME
FULL_NAVE
DI SCI PLI NE_NANME
ADDRESS_TEXT

DATA SUPPLI ER
"NATI ONAL SPACE SCl ENCE DATA CENTER'
" NATI ONAL SPACE SCl ENCE DATA CENTER'
" NATI ONAL SPACE SCl ENCE DATA CENTER'
" NATI ONAL SPACE SCl ENCE DATA CENTER'
"Code 633 \n
CGoddard Space Flight Center \n
Greenbelt, Maryland, 20771, USA"
"3012866695"
" NSI / DECNET"
" NSSDCA: : REQUEST"

TELEPHONE_NUVBER
ELECTRONI C_MAI L_TYPE
ELECTRONI C_MAI L_I D

END_OBJECT DATA_SUPPLI ER
OBJECT = CATALOG
M SSI ON_CATALOG = "M SSI ON. CAT"
Al NSTRUMENT_HOST_CATALOG = "I NSTHOST. CAT"
Al NSTRUMENT_CATALOG = {"CRS_I NST. CAT",
"LECPI NST. CAT",
"MAG_I| NST. CAT",
"PLS_I NST. CAT",

"PRA_I NST. CAT",
"PW5_| NST. CAT"}

ADATA_SET_CATALOG = {"CRS_DS. CAT",
" LECP_DS. CAT",
" MAG_DS. CAT",
"PLS_DS. CAT",
" POS_DS. CAT",
" PRA_DS. CAT",
" PWS_DS. CAT"}
ATARGET CATALOG = TARGET. CAT
APERSONNEL_ CATALOG = PERSON. CAT
AREFERENCE_CATALOG = REF. CAT
END_OBJECT = CATALOG
END_OBJECT = VOLUME

END

Appendix A. PDS Data Object Definitions A-15

A.6 COLLECTION (Primitive Data Object)

The COLLECTION object alows the ordered grouping of heterogeneous objects into a structure.
The COLLECTION object may contain a mixture of different object types, including other
COLLECTIONSs. The optional START_BY TE data element provides the starting location
relative to an enclosing object. If aSTART_BYTE is not specified, avaue of 1 is assumed.

A.6.1 Required Keywords

1. BYTES
2. NAME

A.6.2 Optional Keywords

DESCRIPTION
CHECKSUM
INTERCHANGE_FORMAT
START_BYTE

E N

A.6.3 Required Objects
None

Note that although a specific sub-object is not required, the COLLECTION must contain at |east
one of the optional objects listed following. That is, anull COLLECTION may not be defined.

A.6.4 Optional Objects

ELEMENT
BIT_ELEMENT
ARRAY
COLLECTION

El Ol

A.6.5 Example

Please refer to Section A.2.6, Example 2 under the ARRAY object for an illustration of the
COLLECTION object used in conjunction with other primitive objects.

A-16

A.7

Appendix A. PDS Data Object Definitions

COLUMN

The COLUMN object identifies a single column in a data object.

Notes:

)

(2)
3)

(4)

Q)

A.71

AwWDhPRE

A.7.2

CoNoO~WDNE

Current PDS data objects that include COLUMN objects are the TABLE,
CONTAINER, SPECTRUM and SERIES objects.

COLUMNSs must not themselves contain embedded COLUMN objects.

COLUMNSs of the same format and size which constitute a vector may be specified as a
single COLUMN by using the ITEMS, ITEM_BYTES, and ITEM_OFFSET elements.
The ITEMS data element indicates the number of occurrences of the field (i.e., elements
in the vector).

BYTES and ITEM_BY TES counts do not include leading or trailing delimiters or line
terminators.

For a COLUMN containing ITEMS, the value of BY TES should represent the total size
of the column including delimiters between the items. (See examples 1 and 2 below.)

Required Keywords

NAME

DATA_TYPE

START _BYTE

BYTES (required for COLUMNSs without ITEMS)

Optional Keywords

BIT_MASK

BYTES (optional for COLUMNs with ITEMS)
COLUMN_NUMBER
DERIVED_MAXIMUM
DERIVED_MINIMUM

DESCRIPTION

FORMAT

INVALID_CONSTANT

ITEM_BYTES

10. ITEM_OFFSET

11. ITEMS

12. MAXIMUM

13. MAXIMUM_SAMPLING_PARAMETER
14. MINIMUM

Appendix A. PDS Data Object Definitions A-17

15. MINIMUM_SAMPLING_PARAMETER
16. MISSING_CONSTANT

17. OFFSET

18. SAMPLING_PARAMETER_INTERVAL
19. SAMPLING_PARAMETER_NAME

20. SAMPLING_PARAMETER_UNIT

21. SCALING_FACTOR

22. UNIT

23. VALID_MAXIMUM

24 VALID_MINIMUM

A.7.3 Required Objects

None

A.7.4 Optional Objects

1. BIT_COLUMN
2. ALIAS

A.75 Examplel

The label fragment below shows asimple COLUMN object, in this case from an ASCII TABLE.

OBJECT = CCLUWN
NAVE = "DETECTOR TEMPERATURE"
START_BYTE = 27
BYTES =5
DATA _TYPE = ASCI | _REAL
FORMAT = "F5.1"
UNI'T = "KELVI N'
M SSI NG_CONSTANT = 999.9
END_OBJECT = CCLUWN

A.7.6 Example?2

The fragment below shows two COLUM NS containing multiple items. The first COLUMN isa
vector containing three ASCII_INTEGER items: xx, yy, zz. The second COLUMN contains
three character items. “xx”, “yy” and “zz”. Note that the value of BY TES includes the comma
delimiters between items, but the ITEM_BY TES value does not. The ITEM_OFFSET isthe
number of bytes from the beginning of one item to the beginning of the next.

OBJECT
NAVE

COLUWN
CCOLUWNLXYZ

A-18 Appendix A. PDS Data Object Definitions

DATA TYPE = ASCI | _| NTEGER
START_BYTE =1
BYTES =8 /*includes deliniters*/
| TEVMS =3
| TEM BYTES =2
| TEM OFFSET =3
END_OBJECT = COLUWN
OBJECT = COLUWN
NAVE = COLUMN2XYZ
DATA TYPE = CHARACTER
START_BYTE =2 /* val ue does not include | eading quote */
BYTES = 12 /* value does not include |eading and */
/* trailing quotes */
| TEVMS =3
| TEM BYTES =2 /* val ue does not include |eading and */
/* trailing quotes */
| TEM OFFSET =5 /* val ue does not include | eading quote */
END_OBJECT = COLUWN

A.77 Example3

The fragment below was extracted from alarger example which can be found under the
CONTAINER object. It illustrates asingle COLUMN object subdivided into several
BIT_COLUMN fields.

OBJECT = COLUWN
NANVE = PACKET_I D
DATA _TYPE = LSB BI T_STRI NG
START_BYTE =1
BYTES =2
VALI D_M NI MUM =0
VALI| D_MAXI MUM =7
DESCRI PTI ON = "Packet _id constitutes one of three
parts in the prinmary source
i nformati on header applied by the
Payl oad Data System (PDS) to the MOLA
telenetry packet at the time of
creation of the packet prior to
transfer frame creation. "
OBJECT = BI T_COLUWN
NANVE = VERSI ON_NUMBER
Bl T_DATA_TYPE = MSB_UNSI GNED_| NTEGER
START_BIT =1
BI TS =3
M NI MUM =0
MAXI MUM =7
DESCRI PTI ON = "These bits identify Version 1 as the

Source Packet structure. These bits
shall be set to '000'."
Bl T_COLUWN

END_OBJECT

Appendix A. PDS Data Object Definitions A-19

OBJECT = BI T_COLUWN
NANVE = SPARE
Bl T_DATA TYPE = MSB_UNSI GNED | NTEGER
START_BIT =14
BI TS =1
M NI MUM =0
MAXI MUM =0
DESCRI PTI ON = "Reserved spare. This bit shall be set
to'o0" "
END_OBJECT = BI T_COLUWN
OBJECT = BI T_COLUWN
NAVE = FLAG
Bl T_DATA TYPE = BOCLEAN
START BI T =5
BITS =1
M NI MUM =0
MAXI MUM =0
DESCRI PTI ON = "This flag signals the presence or
absence of a Secondary Header data
structure within the Source Packet.
This bit shall be set to '0" since no
Secondary Header formatting standards
currently exist for Mars Cbserver."
END_OBJECT = BI T_COLUWN
OBJECT = BI T_COLUWN
NANVE = ERROR_STATUS
Bl T_DATA TYPE = MSB_UNSI GNED | NTEGER
START BI T =6
BITS =3
M NI MUM =0
MAXI MUM =7
DESCRI PTI ON = "This field identifies in part the
i ndi vi dual application process within
t he spacecraft that created the Source
Packet data."
END_OBJECT = BI T_COLUWN
OBJECT = BI T_COLUWN
NANMVE = | NSTRUMENT_I D
Bl T_DATA _TYPE = MSB_UNSI GNED_| NTEGER
START_BIT =9
BI TS =8
M NI MUM = "NA"
MAXI MUM = "NA"
DESCRI PTI ON = "This field identifies in part the
i ndi vi dual application process within
the spacecraft that creeated the Source
Packet data. 00100011 is the bit
pattern for MOLA. "
END_OBJECT = BI T_COLUWN
END_OBJECT = COLUWN

A-20 Appendix A. PDS Data Object Definitions

A.8 CONTAINER

The CONTAINER object is used to group a set of sub-objects (such as COLUMNYS) that repeat
within a data object (such asa TABLE). Use of the CONTAINER object alows repeating groups
to be defined within a data structure.

A.8.1 Required Keywords

NAME
START_BYTE
BYTES
REPETITIONS
DESCRIPTION

agrwbdPE

A.8.2 Optional Keywords

Any

A.8.3 Required Objects

None

A.8.4 Optional Objects

1. COLUMN
2. CONTAINER

A.85 Example

The set of labels and format fragments below illustrates a data product layout in which the
CONTAINER object is used. The primary data product isa TABLE of data records. Each record
within the TABLE begins with 48 columns (143 bytes) of engineering data. The data product
acquires science data from seven different frames. Since the data from each frame are formatted
identically, one CONTAINER description suffices for all seven frames.

In this example there are two CONTAINER objects. The first CONTAINER object describes the
repeating frame information. Within this CONTAINER thereis a second CONTAINER object in
which a 4-byte set of three COLUMN objects repeats 20 times. The use of the second

Appendix A. PDS Data Object Definitions

A-21

CONTAINER object permits the data supplier to describe the three COLUMNS (4 bytes) once,
instead of specifying sixty column definitions.

48 Columns of
Eng./Hskeeping Data | Fr 1 Fr2 Fr3 | Fr4 Fr5 Fr6 Fr7
1 143 277 411 545 679 813 947 1080
s S
Container # 1 1 2|46 Columns | times 7 frames (Fr1 - Fr7)
0
1 81 134
Container #2 3 Columns times 20 shots (S1 - S20)
1 4

In the first CONTAINER, the keyword REPETITIONS is equal to 7. In the second
CONTAINER, REPETITIONS equals 20. Both CONTAINER objects contain a collection of
COLUMN objects. In most casesit is preferable to save space in the product label by placing
COLUMN objects in a separate file and pointing to that file from within the CONTAINER

object.

This attached label example describes the above TABLE structure using CONTAINER objects.

PDS_VERSI ON_| D
RECORD_TYPE

FI LE_RECORDS
RECORD BYTES
LABEL_RECORDS
FI LE_NAVE

AMOLA_SCI ENCE_MODE_TABLE
DATA SET_ID

PRODUCT | D

SPACECRAFT_NAME

| NSTRUVENT | D

| NSTRUVENT _NANE

TARGET_NAME

SOFTWARE_NAME

UPLOAD | D

PRODUCT _RELEASE_DATE

START_TI ME

STOP_TI ME
SPACECRAFT_CLOCK_START_COUNT

PDS3

FI XED LENGTH
467

1080

4

" AEDR. AO1"

5

" MO- M MOLA- 1- AEDR- LO- V1. 0"
" MOLA- AEDR- 10010- 0001"
MARS_OBSERVER

MOLA
MARS_OBSERVER LASER ALTI METER
MARS

" BROWSER 17. 1"

"5. 3"

1994- 12- 29T02: 10: 09. 321
1994- 09- 29T04: 12: 43. 983
1994- 09- 29T06: 09: 54. 221
"12345"

A-22 Appendix A. PDS Data Object Definitions

SPACECRAFT_CLOCK_STOP_COUNT "12447"

PRODUCT CREATI ON_TI ME 1994- 01- 29T07: 30: 333
M SSI ON_PHASE NANE MAPPI NG

ORBI T_NUMBER 0001

PRODUCER | D

PRODUCER FULL_NAMVE

PRODUCER | NSTI TUTI ON_NAME " GODDARD SPACE FLI GHT CENTER!

DESCRI PTI ON "This data product contains the
aggregation of MOLA telenetry packets by Orbit. All Experinent
Dat a Record Packets retrieved fromthe PDB are collected in this
data product. The AEDR data product is put together with the
Proj ect - provi ded software tool Browser."

MO_MOLA TEAM
"DAVID E. SM TH'

OBJECT = MOLA SCI ENCE_MODE_TABLE
| NTERCHANGE _FORMAT = BI NARY
ROWS = 463
COLUWNS = 97
ROW BYTES = 1080
NSTRUCTURE = "MOLASCI . FMT"
DESCRI PTI ON = "This table is one of two that describe

t he arrangenent of information on the Mars Observer Laser
Altimeter (MOLA) Aggregated Engineering Data Record (AEDR). ..."

END_OBJECT MOLA_SCl ENCE_MODE_TABLE

END

Contents of the MOLASCI.FMT file:

OBJECT = COLUWN
NANE = PACKET_ID
DATA TYPE = LSB_BI T_STRI NG
START_BYTE =1
BYTES =2
VALI D_M NI MUM =0
VALI D_MAXI MUM =7

DESCRI PTI ON "Packet id constitutes one of three
parts in the primary source information header applied by the
Payl oad Data System (PDS) to the MOLA telemetry packet at the tine
of creation of the packet prior to transfer frame creation.”

OBJECT = BI T_COLUWN
NAVE = VERSI ON_NUMBER
Bl T_DATA TYPE = UNSI GNED_| NTEGER
START BIT =1
BITS =3
M NI MUM =0
MAXI MUM =7
DESCRI PTI ON = "These bits identify Version 1 as the

Source Packet structure. These bits shall be set to '000'."
END_OBJECT Bl T_COLUWN

Appendix A. PDS Data Object Definitions A-23
OBJECT = BI T_COLUWN
NAVE = SPARE
Bl T_DATA TYPE = UNSI GNED_| NTEGER
START BIT =4
BITS =1
M NI MUM =0
MAXI MUM =0
DESCRI PTI ON = "Reserved spare. This bit shall be set
to'o0" "
END_OBJECT = BI T_COLUWN
OBJECT = BI T_COLUWN
NAVE = SECONDARY_HEADER FLAG
Bl T_DATA TYPE = BOOLEAN
START BI T =5
BITS =1
M NI MUM =0
MAXI MUM =0
DESCRI PTI ON = "This flag signals the presence or

absence of a Secondary Header data structure within the Source

Packet. This bit shall be set to '0' since no Secondary Header
formatti ng standards currently exist for Mars Qobserver."
END_OBJECT = BI T_COLUWN
OBJECT = BI T_COLUWN
NANME = ERROR_STATUS
Bl T_DATA TYPE = UNSI GNED_| NTEGER
START BI T =6
BITS =3
M NI MUM =0
MAXI MUM =7
DESCRI PTI ON = "This field identifies in part the
i ndi vi dual application process within the spacecraft that created
t he Source Packet data."
END_OBJECT = BI T_COLUWN
OBJECT = BI T_COLUWN
NAME = | NSTRUMENT_I D
Bl T_DATA TYPE = UNSI GNED_| NTEGER
START BI T =9
BITS =8
M NI MUM = 2#0100011#
MAXI MUM = 2#0100011#
DESCRI PTI ON = "This field identifies in part the
i ndi vi dual application process within the spacecraft that created
t he Source Packet data. 00100011 is the bit pattern for MOLA."
END_OBJECT = BI T_COLUWN
END_OBJECT = COLUWN
OBJECT = COLUWN
NANMVE = COMVAND_ECHO
DATA_TYPE = | NTEGER

A-24

START_BYTE
BYTES

| TEMS

| TEM BYTES
M NI MUM
MAXI MUM
DESCRI PTI ON

current packet,

Appendix A. PDS Data Object Definitions

125

16

8

2

0

65535

"First 8 command words received during

only conpl ete commands are stored, MOLA specific

conmands only. The software attenpts to echo all valid conmands.
If the conmand will fit in the roomremaining in the..."

END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
M NI MUM
MAXI MUM
DESCRI PTI ON

contents upon conpl etion
This word is zeroed, then

vari abl e that

are..."
END_OBJECT

OBJECT
NAVE
ASTRUCTURE

START_BYTE
BYTES

REPETI Tl ONS
DESCRI PTI ON

COLUWN

COLUWN

PACKET_VALI DI TY CHECKSUM

| NTEGER

141

2

0

65535

"Sinple 16 bit addition of entire packet
This location is zeroed for addition.

words 0-539 are added without carry to a

isinitially zero. The resulting |lower 16 bits

COLUWN

CONTAI NER

FRAME_STRUCTURE

"MOLASCFR. FMT™ /*points to the col ums*/
/*that make up the frame descriptors */
143

134

7

"The frame_structure container

represents the fornmat of seven repeating groups of attributes in

this data product.

The data product reflects science data

acquisition fromseven different frames. Since the data from each

frame are ...

END_OBJECT

Contents of the MOLASCFR.FMT FILE:

OBJECT
NANE
START_BYTE
BYTES
REPETI Tl ONS
ASTRUCTURE
DESCRI PTI ON

(range to surface counts,
recei ved pul se energy). The three sub-el enents repeat
for each of 20 shots."

2nd channe

END_OBJECT

CONTAI NER

CONTAI NER

COUNTS

1

4

20

" MOLASCCT. FMT™

"This container has three sub-el ements
1st channel received pul se energy, and

CONTAI NER

Appendix A. PDS Data Object Definitions

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
M NI MUM
MAXI MUM
DESCRI PTI ON
END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
M NI MUM
MAXI MUM
DESCRI PTI ON
END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
M NI MUM
MAXI MUM
DESCRI PTI ON
END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
M NI MUM
MAXI MUM
DESCRI PTI ON

| evels in channels 1, 2, 3,

A-25

COLUWN

SHOT _2_LASER TRANSM TTER _POWR
UNSI GNED_| NTEGER

81

1

0

65535

COLUWN

COLUWN

SHOT _1_LASER TRANSM TTER POWR
UNSI GNED_| NTEGER

82

1

0

65535

COLUWN

COLUWN

SHOT 4 _LASER TRANSM TTER _POWR
UNSI GNED_| NTEGER

83

1

0

65535

COLUWN

COLUWN

CH 3_2ND_HALF_FRAME_BKGRND_CN

UNSI GNED_| NTEGER

133

1

0

255

"The background energy or noise count
and 4 respectively by half-frane.

Pseudo | og value of NO SE(1, 2, 3, 4) at the end of a half-frane

of current frane,
sum.."
END OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
M NI MUM
MAXI MUM

5.3 bit

format. Plog base 2 of background count

COLUWN

COLUWN

CH 4_2ND_HALF_FRAVE_BKGRND CN
UNSI GNED_| NTEGER

134

1

0

255

A-26

DESCRI PTI ON

| evels in channels 1, 2, 3,

Appendix A. PDS Data Object Definitions

noi se count
and 4 respectively by half-frane.

"The background energy or

Pseudo | og value of NO SE(1, 2, 3, 4) at the end of a half-frane

of current frane, 5.3 bit format.

sum.."
END_OBJECT

Contents of the MOLASCCT.FMT FILE:

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
DESCRI PTI ON

Pl og base 2 of background count

COLUWN

COLUWN

RANGE_TO_SURFACE_TI U_CNTS

MSB_| NTEGER

1

2

"The possible 20 valid franme | aser shots

surface rangi ng measurenments in Timng Interval Unit (TIU counts.
The least significant 16 bits of TIU (SLTIU), stored for every
shot. B[0O] = Bits 15-8 of TIU reading; B[1]] = Bits 7-0 of ..."
END_OBJECT = COLUWN
OBJECT = COLUWN
NANVE = FI RST_CH_RCVD_PULSE_ENRGY
DATA_TYPE = UNSI GNED_| NTEGER
START_BYTE =3
BYTES =1
DESCRI PTI ON = "The level of return, reflected energy

as received by the first channe
val ues for
nunbered non-zero energy readi ng for each shot."

This is a set of
frame. Lowest
END OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
DESCRI PTI ON

as received by the second

This is a set of values for

frame. 2nd | owest
shot..."

END_OBJECT

and matched filter to trigger
all possible 20 shots within the
COLUWN

COLUWN
SECOND_CH_RCVD_PULSE_ENRGY
UNSI GNED | NTEGER

4

1

"The | evel of
channe
al

return, reflected energy
and matched filter to trigger
possi bl e 20 shots within the

nunbered non-zero energy reading for each

COLUWN

Appendix A. PDS Data Object Definitions A-27

A.9 DATA_PRODUCER

The DATA_PRODUCER object is arequired sub-object of the VOLUME object. The
DATA_PRODUCER, as opposed to the DATA_SUPPLIER, isan individua or organization
responsible for collecting, assembling, and/or engineering the raw datainto one or more data
sets.

A.9.1 Required Keywords

INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
ADDRESS TEXT

El Ol

A.9.2 Optional Keywords

DISCIPLINE_NAME
NODE_NAME
TELEPHONE_NUMBER
ELECTRONIC_MAIL_TYPE
ELECTRONIC_MAIL_ID

agrwWDNE

A.9.3 Required Objects

None

A.9.4 Optional Objects

None

A.95 Example

The fragment below was extracted from the example under the VOLUME object.

OBJECT
I NSTI TUTI ON_NAME
FACI LI TY_NAME

DATA_PRODUCER
"U S.GS. FLAGSTAFF"
"BRANCH OF ASTROGEOLOGY"

FULL_NAME "ERIC M ELI ASON'
Dl SCI PLI NE_NAME "1 MAGE PRCOCESSI NG'
ADDRESS TEXT "Branch of Astrogeol ogy

United States Ceol ogi cal Survey

A-28 Appendix A. PDS Data Object Definitions

2255 North Genmini Drive
Fl agstaff, Arizona 86001 USA"
END_OBJECT = DATA_ PRODUCER

Appendix A. PDS Data Object Definitions A-29

A.10 DATA_SUPPLIER

The DATA_SUPPLIER object is an optiona sub-object of the VOLUME object. The
DATA_SUPPLIER, as opposed to the DATA_PRODUCER, isan individua or organization
responsible for distributing the data sets and associated data to the science community.

A.10.1 Required Keywords

INSTITUTION_NAME
FACILITY_NAME
FULL_NAME

ADDRESS TEXT
TELEPHONE_NUMBER
ELECTRONIC_MAIL_TYPE
ELECTRONIC_MAIL_ID

NogabkrowbdrE

A.10.2 Optional Keywords

1. DISCIPLINE_NAME
2. NODE_NAME

A.10.3 Required Objects

None

A.10.4 Optional Objects

None

A.10.5 Example

The fragment below was extracted from the larger example which can be found under the
VOLUME object.

OBJECT
| NSTI TUTI ON_NANE
FACI LI TY_NANME
FULL_NAVE
DI SCI PLI NE_NANE
ADDRESS_TEXT

DATA SUPPLI ER

" NATI ONAL SPACE SCI ENCE DATA CENTER'
"NATI ONAL SPACE SCI ENCE DATA CENTER'
" NATI ONAL SPACE SCI ENCE DATA CENTER'
" NATI ONAL SPACE SCI ENCE DATA CENTER'
"Code 633

Goddard Space Flight Center
Greenbelt, Maryland, 20771, USA"
"3012866695"

TELEPHONE_NUMBER

A-30 Appendix A. PDS Data Object Definitions

ELECTRONI C_MAI L_TYPE
ELECTRONI C_MAI L_I D
END_OBJECT

" NSI / DECNET"
" NSSDCA: : REQUEST"
DATA SUPPLI ER

Appendix A. PDS Data Object Definitions A-31

A.11 DIRECTORY

The DIRECTORY object is used to define a hierarchical file organization on alinear (i.e.,
sequential) medium such as tape. The DIRECTORY object identifies all directories and
subdirectories below the root level. It is arequired sub-object of the VOLUME object for
volumes delivered on sequential media.

Note: The root directory on avolume does not need to be explicitly defined with the
DIRECTORY object.

Subdirectories are identified by defining DIRECTORY objects as sub-objects of the root
DIRECTORY . Files within the directories and subdirectories are sequentially identified by using
FILE objects with a SEQUENCE_NUMBER value corresponding to their position on the
medium. The SEQUENCE_NUMBER value must be unique for each file on the medium.

A.111 Required Keywords

1. NAME

A.11.2 Optional Keywords

1. RECORD_TYPE
2. SEQUENCE_NUMBER

A.11.3 Required Objects

1. FILE

A.11.4 Optional Objects

1. DIRECTORY

A-32

A.115 Example

Appendix A. PDS Data Object Definitions

The fragment below was extracted from the larger example which can be found under the

VOLUME object.

OBJECT
NAVE

OBJECT
FI LE_NAME
RECORD_TYPE
SEQUENCE_NUMBER

END_OBJECT

OBJECT
FI LE_NAME
RECORD_TYPE
SEQUENCE_NUMBER

END_OBJECT

OBJECT
FI LE_NAME
RECORD_TYPE
RECORD_BYTES
FI LE_RECORDS
SEQUENCE_NUMBER

END_OBJECT

END_OBJECT

DI RECTORY
I NDEX

FI LE

"I NDXI NFO. TXT"
STREAM

5

FI LE

FI LE

"I NDEX. LBL"
STREAM

6

FI LE

FI LE

" | NDEX. TAB"
FI XED_LENGTH
512

6822

7

FI LE

DI RECTCORY

Appendix A. PDS Data Object Definitions A-33

A.12 DOCUMENT

Note: This section is currently undergoing major revision. Please consult a PDS
data engineer for the latest available information on document labelling.

The DOCUMENT object is used to label a particular document that is provided on avolume to
support an archived data product. A document can be made up of one or morefilesin asingle
format. For instance, a document may be comprised of as many TIFF files as there are pages in
the document.

Multiple versions of a document can be supplied on a volume with separate formats, requiring a
DOCUMENT object for each document version (i.e., OBJECT = TEX_DOCUMENT and
OBJECT = PS_DOCUMENT when including both the TEX and Postscript versions of the same
document).

PDS requires that at least one version of any document be plain ASCII text in order to allow
users the capability to read, browse, or search the text without requiring software or text
processing packages. This version can be plain, unmarked text, or ASCII text containing a
markup language. (See the Documentation chapter of this document for more details.)

The DOCUMENT object contains keywords that identify and describe the document, provide the
date of publication of the document, indicate the number of files comprising the document,
provide the format of the document files, and identify the software used to compress or encode
the document, as applicable.

DOCUMENT labels must be detached files unless the files are plain, unmarked text that will not
be read by text or word processing packages. A DOCUMENT object for each format type of a
document can be included in the same label file with pointers, such as"TIFF_DOCUMENT for a
TIFF formatted document. (See example below.)

A.12.1 Required Keywords

DOCUMENT_NAME
DOCUMENT_TOPIC_TYPE
INTERCHANGE_FORMAT
DOCUMENT_FORMAT
PUBLICATION_DATE

agrwbdPE

A.12.2 Optional Keywords

1. ABSTRACT_TEXT
2. DESCRIPTION

A-34 Appendix A. PDS Data Object Definitions

3. ENCODING_TYPE
4. FILES

A.12.3 Required Objects

None

A.12.4 Optional Objects

None

A.125 Example

The following example detached label, PDSUG.LBL, isfor a Document provided in three
formats: ASCII text, TIFF, and TEX.

PDS_VERSI ON_| D = PDS3
RECORD TYPE = UNDEFI NED
AASCI | DOCUMENT " PDSUG. ASC"

ATIFF_ " P 1.TIF, "P TR,
DOCUNMENT DSURD0 DSUGD02
" PDSUGD03. TI F*, "PDSUGD04. TI F" }

" PDSUG. TEX"

ATEX_DOCUVENT

OBJECT = ASCI | _ DOCUMENT
DOCUMENT _NAME = "Planetary Data System Data Set Catal og
User's Cui de"
PUBLI CATI ON_DATE = 1992-04- 13
DOCUMENT _TOPI C_TYPE = "USER S GUI DE"
| NTERCHANGE _FORMAT = ASCI |
DOCUMENT _FORNAT = TEXT

DESCRI PTI ON "The Pl anetary Data System Data Set
Catal og User's Guide describes the fundamental s of accessing,
searching, browsing, and ordering data fromthe PDS Data Set Catal og
at the Central Node. The text for this 4-page docunent is provided
here in this plain, ASCII text file."

ABSTRACT_TEXT = "The PDS Data Set Catalog is sinmlar in
function and purpose to a card catalog in a library. Use a Search
screen to find data items, a List/Order screen to order data itens,
and the More nmenu option to see nore information."

END_OBJECT ASCI | _ DOCUMENT

OBJECT
DOCUVENT _NANE

TI FF_DOCUMENT
"Planetary Data System Data Set Catal og
User's Cui de"

Appendix A. PDS Data Object Definitions

DOCUMENT _TOPI C_TYPE
| NTERCHANGE _FORVAT
DOCUVENT _FORVAT
PUBLI CATI ON_DATE

FI LES

ENCODI NG_TYPE
DESCRI PTI ON

A-35

"USER S GUI DE'

Bl NARY

TI FF

1992- 04- 13

4

"CCl TT/ 3"

"The Pl anetary Data System Data Set

Catal og User's Cuide describes the fundamental s of accessing,

sear chi ng, browsing,
at the Central Node.

The 4-page docunent

and ordering data fromthe PDS Data Set Catal og

is provided here in 4 consecutive files, one

file per page, in Tagged Inmage File Format (TIFF) using Group 3
conpression. It has been successfully inmported into WrdPerfect
5.0, FrameMaker, and Phot oshop."

ABSTRACT_TEXT

"The PDS Data Set Catalog is simlar in

function and purpose to a card catalog in a library. Use a Search
a List/Order screen to order data itens,
and the More nmenu option to see nore information."

screen to find data itens,

END_OBJECT

OBJECT
DOCUVENT _NANE

DOCUMENT _TOPI C_TYPE
| NTERCHANGE _FORVAT
DOCUMENT _FORVAT
PUBL| CATI ON_DATE
DESCRI PTI ON

Tl FF_DOCUMENT

TEX_DOCUMENT

"Planetary Data System Data Set Catal og
User's Cuide"

"USER S GUI DE'

ASCI |

TEX

1992-04- 13

"The Pl anetary Data System Data Set

Catal og User's CGuide describes the fundamental s of accessing,

sear chi ng, browsing,
at the Central Node.

The 4-page docunent

necessary nacros included."

ABSTRACT_TEXT

and ordering data fromthe PDS Data Set Catal og

is provided here in TeX format with all

"The PDS Data Set Catalog is simlar in

function and purpose to a card catalog in a library. Use a Search
a List/Order screen to order data itens,
and the More nmenu option to see nore information."

screen to find data itens,

END_OBJECT
END

TEX_DOCUVENT

A-36 Appendix A. PDS Data Object Definitions

A.13 ELEMENT (Primitive Data Object)

The ELEMENT object provides a means of defining alowest-level component of a data object,
and which can be stored in an integral multiple of 8-bit bytes. ELEMENT objects may be
embedded in COLLECTION and ARRAY data objects. The optional START_BY TE element
identifies alocation relative to the enclosing object. If not explicitly included, aSTART_BYTE
= lisassumed for the ELEMENT.

A.13.1 Required Keywords

1. BYTES
2. DATA_TYPE
3. NAME

A.13.2 Optional Keywords

START BYTE
BIT_MASK
DERIVED_MAXIMUM
DERIVED_MINIMUM
DESCRIPTION
FORMAT
INVALID_CONSTANT
MINIMUM

. MAXIMUM

10. MISSING_CONSTANT
11. OFFSET

12. SCALING_FACTOR
13. UNIT

14. VALID_MINIMUM

15. VALID_MAXIMUM

CoNoO~WDNE

A.13.3 Required Objects

None

A.13.4 Optional Objects

None

Appendix A. PDS Data Object Definitions A-37

A.13.5 Example

Please refer to the example in the ARRAY Primitive object (Section A.2) for an example of the
use of the ELEMENT object.

A-38 Appendix A. PDS Data Object Definitions

A.14 FILE

The FILE object is used in attached or detached |abels to define the attributes or characteristics of
adatafile. In attached labels, the file object is also used to indicate boundaries between |abel
records and data records in data files which have attached |abels. The FILE object may be used in
three ways:

1. Asanimplicit object in attached or detached labels. All detached label files and attached
labels contain an implicit FILE object which starts at the top of the label and ends where
the label ends. In these cases, the PDS recommends against using the NAME keyword to
reference the file name. This label fragment shows the required FILE object elements as
they typically appear in labels:

RECORD_TYPE = FI XED_LENGTH
RECORD BYTES = 80
FI LE_RECORDS = 522
LABEL_RECORDS = 10

For data products labelled using the implicit file object (e.g., in minimal labels)
“DATA_OBJECT_TYPE = FILE” should be used inthe DATA_SET catalog object.

2. Asan explicit object which is used when afile reference is needed in a combined
detached or minimal label. In this case, the optional FILE_NAME element is used to
identify the file being referenced.

OBJECT = FILE
FI LE_NAME = "| MLO347. DAT"
RECORD_TYPE = STREAM
FI LE_RECORDS = 1024
END_OBJECT = FILE

For data products labelled using the explicit FILE object (e.g., in minimal |abels)
DATA_OBJECT_TYPE = FILE should be used inthe DATA_SET catalog object.

3. Asan explicit object to identify specific files as sub-objects of the DIRECTORY in
VOLUME objects. In this case, the optional FILE_ NAME element is used to identify the
file being referenced on atape archive volume.

OBJECT = FILE
FI LE_NAME = "VOLDESC. CAT"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 1

END_OBJECT = FILE

Appendix A. PDS Data Object Definitions A-39

The keywords in the FILE object always describe the file being referenced, and not thefilein
which the keywords are contained (i.e., if the FILE object is used in a detached label file, the
FILE object keywords describe the detached datafile, not the label file which contains the
keywords). For example, if adetached label for adatafileis being created and the label will bein
STREAM format, but the data will be stored in afile having FIXED_LENGTH records, then the
RECORD_TY PE keyword in the label file must be given the value FIXED_LENGTH.

The following table identifies data elements that are required (Req), optional (Opt), and not
applicable (-) for various types of files

Labeling M ethod Att Det Att Det Att Det Att Det
RECORD_TY PE FIXED_LENGTH VARIABLE_LENGTH STREAM UNDEFINED
RECORD_BYTES Req Req Rmax Rmax Omax

FILE_RECORDS Req Req Req Req Opt Opt - -
LABEL_RECORDS Req - Req - Opt

A.14.1 Required Keywords

1. RECORD_TYPE

(See above table for the conditions of use of additional required keywords)

A.14.2 Optional Keywords

1. DESCRIPTION

2. ENCODING_TYPE

3. FILE_NAME (required only in minimal detached labels and tape archives)

4. FILE_RECORDS (required only in minimal detached labels and tape archives)
5. INTERCHANGE_FORMAT

6. LABEL_RECORDS

7. RECORD_BYTES

8. REQUIRED_STORAGE _BYTES

9. SEQUENCE_NUMBER

10. UNCOMPRESSED_FILE_NAME

A.14.3 Required Objects

None

A-40 Appendix A. PDS Data Object Definitions

A.14.4 Optional Objects

None

A.145 Example

Following is an example of a set of explicit FILE objectsin a combined detached label. An
additional example of the use of explicit FILE object can be found under the VOLUME object
(Section A.29).

PDS_VERSI ON_| D
HARDWARE_MODEL_| D
OPERATI NG_SYSTEM | D
SPACECRAFT_NAME

| NSTRUVENT _NANE

M SSI ON_PHASE_NAME

PDS3

"SUN SPARC STATI ON'
"SUN CS 4.1.1"
"VOYAGER 2"

"PLASMA WAVE RECEI VER'
" URANUS ENCOUNTER'

TARGET _NAVE URANUS
DATA _SET_ID "VG2- U- PW6- 4- RDR- SA- 48. 0SEC- V1. 0"
PRODUCT I D " T860123- T860125"
OBJECT = FILE
FI LE_NAME = "T860123. DAT"
FI LE_RECORDS = 1800
RECORD_TYPE = FI XED_LENGTH
RECORD_BYTES = 105
START_TI ME = 1986- 01- 23T00: 00: 00. 000Z
STOP_TI ME = 1986- 01- 24T00: 00: 00. 000Z
ATI ME_SERI ES = "T860123. DAT"
OBJECT = TI ME_SERI ES
| NTERCHANGE_FORVAT = BI NARY
ROAS = 1800
ROW BYTES = 105
COLUMNS = 19
ASTRUCTURE = " PWS_DATA. FMI"
SAMPLI NG_PARAMETER_NANE = TIME
SAMPLI NG_PARAMETER UNI T = SECOND
SAMPLI NG_PARAMETER | NTERVAL = 48.0
END_OBJECT = TI ME_SERI ES
END_OBJECT = FILE
OBJECT = FILE
FI LE_NAME = "T860124. DAT"
FI LE_RECORDS = 1800
RECORD_TYPE = FI XED_LENGTH
RECORD_BYTES = 105
START_TI ME = 1986- 01- 24T00: 00: 00. 000Z

STOP_TI ME 1986- 01- 25T00: 00: 00. 000Z

Appendix A. PDS Data Object Definitions

ATl ME_SERI ES

OBJECT
| NTERCHANGE _FORVAT
RONG
ROW BYTES
COLUWNS
ASTRUCTURE
SAVPLI NG_PARAVETER NANE
SAVPLI NG_PARAVETER_UNI T
SAVPLI NG_PARAVETER | NTERVAL
END_OBJECT
END_OBJECT

OBJECT
FI LE_NAVE
FI LE_RECORDS
RECORD_TYPE
RECORD BYTES
START_TI ME
STOP_TI ME
ATI ME_SERI ES

OBJECT
| NTERCHANGE _FORVAT
RONG
ROW BYTES
COLUWNS
ASTRUCTURE
SAVPLI NG_PARAVETER NANE
SAVPLI NG_PARAVETER_UNI T
SAVPLI NG_PARAVETER | NTERVAL
END_OBJECT
END_OBJECT
END

"T860124. DAT"

TI ME_SERI ES
Bl NARY

1800

105

19

" PWS_DATA. FMI™
TI ME
SECOND

48.0

TI ME_SERI ES
FILE

FI LE
"T860125. DAT"
1799

FI XED_LENGTH
105

1986- 01- 30T00: 00: 00. 000Z
1986-01-30T23: 59: 12. 000Z

"T860125. DAT"

TI ME_SERI ES
Bl NARY

1799

105

19

" PWS_DATA. FMI™
TI ME
SECOND

48.0

TI ME_SERI ES
FILE

A-41

A-42 Appendix A. PDS Data Object Definitions

A.15 GAZETTEER_TABLE

The GAZETTEER_TABLE object is a specific type of TABLE object that provides information
about the geographical features of a planet or satellite. It contains information about named
features such aslocation, size, origin of feature name, and so on. The GAZETTEER_TABLE
contains one row for each named feature on the target body. The table is formatted so that it may
be read directly by many data management systems on various host computers. All fields
(columns) are separated by commas, and character fields are enclosed by double quotation marks.
Each record consist of 480 bytes, with a carriage return/line feed sequence in bytes 479 and 480.
This allows the table to be treated as a fixed length record file on hosts that support thisfile type
and as anormal text file on other hosts.

Currently the PDS Imaging Node at the USGS is the data producer for al
GAZETTEER TABLEs.

A.151 Required Keywords

NAME
INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES
DESCRIPTION

ok wbdE

A.15.2 Optional Keywords

Any

A.15.3 Required Objects

1. COLUMN

A.1531 Required COLUMN Objects (NAME =)

TARGET_NAME
SEARCH_FEATURE_NAME
DIACRITIC_FEATURE_NAME
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
CENTER_LATITUDE

Appendix A. PDS Data Object Definitions A-43

MINIMUM_LONGITUDE
MAXIMUM_LONGITUDE
CENTER_LONGITUDE
LABEL_POSITION_ID
FEATURE_LENGTH
PRIMARY_ PARENTAGE_ID
SECONDARY_PARENTAGE_ID
MAP_SERIAL_ID
FEATURE_STATUS TYPE
APPROVAL_DATE
FEATURE_TYPE
REFERENCE_NUMBER
MAP_CHART ID
FEATURE_DESCRIPTION

A.153.2 Required Keywords (for Required COLUMN Objects)

NAME
DATA_TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION

A.15.4 Optional Objects

None

A.155 Example

PDS_VERSI ON_I D PDS3

RECORD_TYPE = FI XED_LENGTH
RECORD_BYTES = 480

FI LE_RECORDS = 1181

PRODUCT_I D = XYZ
TARGET_NAME = MARS
NGAZETTEER _TABLE = "GAZETTER. TAB"

OBJECT = GAZETTEER TABLE
NAVE = "PLANETARY NOVENCLATURE GAZETTEER®
| NTERCHANGE_FORIVAT = ASCl |
ROWNG = 1181
COLUMNS = 20

ROW BYTES 480

Appendix A. PDS Data Object Definitions

DESCRI PTI ON = "The gazetteer (file: GAZETTER TAB) is a
tabl e of geographical features for a planet or satellite. It
contains informati on about a naned feature such as |ocation, size,
origin of feature name, etc. The CGazetteer Table contains one row
for each feature naned on the target body. The table is formatted
so that it may be read directly into nany data managenent systens on
various host computers. All fields (columms) are separated by
conmas, and character fields are preceded by doubl e quotation marks.
Each record consist of 480 bytes, with a carriage return/line feed
sequence in bytes 479 and 480. This allows the table to be treated
as a fixed length record file on hosts that support this file type
and as a nornal text file on other hosts."

OBJECT = COLUWN
NANVE = TARGET_NAME
DATA TYPE = CHARACTER
START_BYTE =2
BYTES = 20
FORMAT = "A20"
UNI T = "NA"
DESCRI PTI ON = "The planet or satellite on which the
feature is |ocated."
END_OBJECT = COLUWN
OBJECT = COLUWN
NANE = SEARCH_FEATURE_NANE
DATA TYPE = CHARACTER
START_BYTE = 25
BYTES = 50
FORNMAT = "A50"
UNI' T = "NA"
DESCRI PTI ON = "The geographical feature name with al

diacritical marks stripped off. This name is stored in upper case
only so that it can be used for sorting and search purposes. This
field should not be used to designate the name of the feature
because it does not contain the diacritical nmarks. Feature names not
containing diacritical marks can often take on a conpletely

di fferent neaning and in sone cases the meani ng can be deeply

of f ensi ve. "

END_OBJECT = COLUWN
OBJECT = COLUWN
NAVE = DI ACRI TI C_FEATURE NAME
DATA TYPE = CHARACTER
START_BYTE = 78
BYTES = 100
FORMAT = "Al00"
UNI T = "NA"
DESCRI PTI ON = "The geographi cal feature nane

contai ning standard diacritical information. A detailed description
of the diacritical mark formats are described in the gazetteer
document ati on.

Appendix A. PDS Data Object Definitions A-45

DI ACRI TI CALS USED I N THE TABLE

The word diacritic cones froma Geek word nmeaning to separate.
It refers to the accent narks enployed to separate, or distinguish,
one form of pronunciation of a vowel or consonant from anot her

This note is included to famliarize the user with the codes used
to represent diacriticals found in the table, and the val ues usually
associated with them In the table, the code for a diacritical is
preceded by a backslash and is followed, w thout a space, by the
letter it is nodifying.

This note is organized as follows: the code is listed first,
foll owed by the nane of the accent mark, if applicable, a brief
description of the appearance of the diacritical and a short
narrative on its usage.

acute accent; a straight diagonal |ine extending fromupper right to
lower left. The acute accent is used in npst | anguages to | engthen a
vowel ; in some, such as Gscan, to denote an open vowel. The acute

is also often used to indicate the stressed syllable; in sone
transcriptions it indicates a pal atalized consonant.

di aeresis or umaut; two dots surnounting the letter. In Ronance
| anguages and English, the diaeresis is used to indicate that
consecutive vowel s do not forma dipthong (see below); in nodern
German and Scandi navi an | anguages, it denotes pal atalization of
vowel s.

circunflex; a chevron or inverted 'v' shape, with the apex at the
top. Used nost often in nodern | anguages to indicate |engthening of
a vowel .

tilde; a curving or waving |line above the letter. The tilde is a
formof circunflex. The tilde is used npbst often in Spanish to form
a palatalized n as in the word 'ano', pronounced 'anyo'. It is

al so used occasionally to indicate nasalized vowels.

macron; a straight line above the letter. The macron is used al nost
universally to | engthen a vowel.

breve; a concave semicircle or 'u' shape surnounting the letter
Oiginally used in Greek, the breve indicates a short vowel.

a small circle or 'o
Scandi navi an | anguages to indicate a broad

above the letter. Frequently used in

o .

e dipthong or ligature; transcribed as two letters in contact with
each other. The dipthong is a conbination of vowels that are
pronounced toget her

cedilla; a curved line surnounted by a vertical line, placed at the
bottom of the letter. The cedilla is used in Spanish and French to
denote a dental, or soft, ' In the new Turkish transcription

c .

A-46

c

check or
accent

and shoe and the 'zh'

a single dot above the letter.
in Lithuanian, it

t hi ngs;

when used with
in lrish orthography, it

bel ow) .

accent grave,

upper

cedilla has the value of English 'ch'.
the cedilla under a consonant
inverted circunflex;
is used widely in Slavic |languages to indicate a pal ata
articul ation,

Appendix A. PDS Data Object Definitions

In Semitic | anguages,
indicates that it is enphatic.
Thi s

a 'v' shape above the letter.

like the consonant sounds in the English words chapter

a di agonal
left to | ower

Lt

ri ght.

sound in pleasure.

This diacritical denotes various

i ndi cates a close long vowel. In Sanskrit,
is a velar sound, as in the English 'sink';
i ndicates a fricative consonant (see

line (above the letter) extending from
The grave accent

is used in French,

Spani sh and ltalian to denote open vowels.

fricative;
consonant

a horizonta

it is emtted."”

END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
FORMAT
UNIT

DESCRI PTI ON

t he sout her nnost

bi n,
END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
FORMAT
UNIT

feature,

or

DESCRI PTI ON
t he nort her nnost
bin, feature, or

END_OBJECT

OBJECT

NANE

DATA TYPE
START_BYTE
BYTES
FORMAT

line through a consonant.
is characterized by a frictiona

A fricative
rustling of the breath as

COLUWN

COLUWN

M NI MUM_LATI TUDE
REAL

180

7

"F7.2"

DEGREE

= "The minimum.|l atitude el ement specifies

 atitude of
region."

= "The maxi mum | atitude el emrent

latitude of
region."

a spatial area, such as a map, npsaic,

COLUWN

COLUWN

MAXI MUM_LATI TUDE

REAL

188

7

"F7.2"

DEGREE

speci fies
a spati al nosai c,

area, such as a map,

COLUWN

COLUWN
CENTER_LATI TUDE
REAL

196

7

"F7.2"

Appendix A. PDS Data Object Definitions A-47
UNI'T = DEGREE
DESCRI PTI ON = "The center latitude of the feature."
END_OBJECT = COLUWN
OBJECT = COLUWN
NAVE = M N MUM LONG TUDE
DATA TYPE = REAL
START_BYTE = 204
BYTES =7
FORMAT = "F7.2"
UNI' T = DEGREE
DESCRI PTI ON = "The mi ni mum_| ongi t ude el enent
specifies the easternnost latitude of a spatial area, such as a
map, nosaic, bin, feature, or region. "
END_OBJECT = COLUWN
OBJECT = COLUWN
NAVE = MAXI MUM LONG TUDE
DATA TYPE = REAL
START_BYTE = 212
BYTES =7
FORMAT = "F7.2"
UNI T = DEGREE
DESCRI PTI ON = "The nmaxi mum | ongi tude el enent specifies
t he westernnost |ongitude of a spatial area, such as a nap, npsaic,
bin, feature, or region. "
END_OBJECT = COLUWN
OBJECT = COLUWN
NAMVE = CENTER_LONG TUDE
DATA TYPE = REAL
START_BYTE = 220
BYTES =7
FORMAT = "F7.2"
UNI'T = DEGREE
DESCRI PTI ON = "The center longitude of the feature."
END_OBJECT = COLUWN
OBJECT = COLUWN
NANE = LABEL_PCSITION ID
DATA TYPE = CHARACTER
START_BYTE = 229
BYTES =2
FORMAT = "A2"
UNI' T = "NA"
DESCRI PTI ON = "The suggested plotting position of the
feature name (UL=Upper left, UC=Upper center, UR=Upper right,
CL=Center left, CR=Center right, LL=Lower left, LC=Lower center
LR=Lower right). This field is used to instruct the plotter where to
pl ace the typographical |abel with respect to the center of the
feature. This code is used to avoid crowdi ng of nanes in areas

where there is a high density of named features."

END_OBJECT

COLUWN

A-48

Appendix A. PDS Data Object Definitions

OBJECT = COLUWN
NAME = FEATURE_LENGTH
DATA_TYPE = REAL
START_BYTE = 233
BYTES =8
FORVAT = "F8.2"
UNI'T = KI LOVETER
DESCRI PTI ON = "The longer or |ongest dinension of an

object. For the Gazetteer usage, this field refers to the length of
t he naned feature."

END_OBJECT = COLUWN
OBJECT = COLUWN
NAME = PRI MARY_PARENTAGE I D
DATA_TYPE = CHARACTER
START_BYTE = 243
BYTES =2
FORVAT = "A2"
UNI'T = "NA"
DESCRI PTI ON = "This field contains the primary origin
of the feature name (i.e. where the nane origi nated). It contains

a code for the continent or country origin of the nanme. Please see
Appendi x 5 of the gazetteer docunentation (GAZETTER TXT) for a
definition of the codes used to define the continent or country."

END_OBJECT = COLUWN
OBJECT = COLUWN
NANE = SECONDARY_PARENTAGE_| D
DATA TYPE = CHARACTER
START_BYTE = 248
BYTES =2
FORMAT = "A2"
UNI' T = "NA"
DESCRI PTI ON = "This field contains the secondary

origin of the feature name. It contains a code for a country, state,
territory, or ethnic group. Please see Appendix 5 of the gazetteer
docunent ati on (GAZETTER TXT) for a defintion of the codes in this

field."

END_OBJECT = CCOLUWN
OBJECT = CCOLUWN
NANME = MAP_SERIAL_ID
DATA_TYPE = CHARACTER
START_BYTE = 253
BYTES =6
FORVAT = "AB"
UNI' T = "NA"
DESCRI PTI ON = "The identification of the map that

contains the naned feature. This field represents the map seri al
nunber of the map publication used for ordering maps fromthe U S
Geol ogi cal Survey. The nmap identified in this field best portrays
t he naned feature.”

END_OBJECT = COLUWN

Appendix A. PDS Data Object Definitions

A-49

OBJECT = COLUWN
NAVE = FEATURE_STATUS TYPE
DATA TYPE = CHARACTER
START_BYTE = 262
BYTES = 12
FORMAT = "Al2"
UNI T = "NA"
DESCRI PTI ON = "The | AU approval status of the named
feature. Permitted val ues are ' PROPCSED , ' PROVI SI ONAL', 'I AU

APPROVED , and ' DROPPED .

Dr opped nanes have been disall owed by the

| AU. However, these features have been included in the gazetteer for

hi stori cal purposes.
| AU may commonly be
END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
FORMAT
UNI T
DESCRI PTI ON

Sonme naned features that are disallowed by the
used on sone naps."

COLUWN

COLUWN

APPROVAL_DATE

| NTEGER

276

4

"y e

n I\V All

"Date at which an object has been

approved by the officially sanctioned organization. This field
contains the year the | AU approved the feature nane."

END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRI PTI ON

a particular feature,

' CRATER' , ' TESSERA',

= COLUWN

COLUWN

FEATURE_TYPE

CHARACTER

282

20

" A20"

"N A"

"The feature type identifies the type of

according to | AU standards. Exanples are
'"TERRA', etc. See Appendix 7 of the gazetteer

document ati on (GAZETTER. TXT).

DESCRI PTOR TERMS (FEATURE TYPES)

FEATURE
ALBEDO FEATURE
CATENA

CAVUS

CHACS

CHASMA

CCLLES

CORONA

CRATER

DORSUM
ERUPTI VE CENTER
FACULA

DESCRI PTI ON

Al bedo feature

Chain of craters

Hol | ows, irregul ar depressions

Di stinctive area of broken terrain

Canyon

Smal|l hill or knob
Ovoi d- shaped feature
Crater

Ri dge

Eruptive center
Bri ght spot

A-50 Appendix A. PDS Data Object Definitions

FLEXUS Cuspate linear feature
FLUCTUS Flow terrain
FOSSA Long, narrow, shall ow depression
LABES Landsl i de
LABYRI NTHUS Intersecting valley conpl ex
LACUS Lake
LARGE RI NGED FEATURE Large ringed feature
LI NEA El ongat e mar ki ng
MACULA Dar k spot
MARE Sea
MENSA Mesa, flat-topped el evation
MONS Mount ai n
OCEANUS Ccean
PALUS Swanp
PATERA Shal | ow crater; scalloped, conplex edge
PLANI TI A Low pl ain
PLANUM Pl at eau or high plain
PROVONTORI UM Cape
REA O Regi on
Rl MA Fi ssure
RUPES Scar p
SCOPULUS Lobate or irregular scarp
SI NUS Bay
SULCUS Subparal l el furrows and ridges
TERRA Ext ensi ve | and nass
TESSERA Til e; pol ygonal ground
THOLUS Smal | domical nountain or hill
UNDAE Dunes
VALLI S Si nuous val |l ey
VASTI TAS W despread | owl ands
VARI ABLE FEATURE Variable feature "
END_OBJECT = COLUWN
OBJECT = COLUWN
NAVE = REFERENCE NUVMBER
DATA TYPE = | NTEGER
START_BYTE = 304
BYTES =4
FORMAT ="14"
UNI' T = "NA"
DESCRI PTI ON = "Literature reference fromwhich the

spel ling and description of the feature nane was derived. See
Appendi x 6 of the gazetteer docunentation (GAZETTER TXT)."

END_OBJECT = COLUWN
OBJECT = COLUWN
NANE = MAP_CHART | D
DATA TYPE = CHARACTER
START_BYTE = 310
BYTES =6
FORMAT = "AB"
UNIT = "N A"

Appendix A. PDS Data Object Definitions

DESCRI PTI ON
the map designator or chart
etc.)."

END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRI PTI ON
END_OBJECT
END_OBJECT
END

A-51

"This field contains the abbreviation of
identification (example MC-19, MC 18,

COLUWN

COLUWN

FEATURE_DESCRI PTI ON

CHARACTER

319

159

"A159"

"N A"

"Short description of the feature nane."
COLUWN

GAZETTEER TABLE

A-52 Appendix A. PDS Data Object Definitions

A.16 HEADER

The HEADER object is used to identify and define the attributes of commonly used header data
structures such as VICAR or FITS. These structures are usually system or software specific and
are described in detail in areferenced description text file. The use of BY TES within the header
object refersto the number of bytes for the entire header, not a single record.

A.16.1 Required Keywords

1. BYTES
2. HEADER_TYPE

A.16.2 Optional Keywords
1. DESCRIPTION

2. INTERCHANGE_FORMAT
3. RECORDS

A.16.3 Required Objects

None

A.16.4 Optional Objects

None

A.16.5 Example

The following example shows the detached |abel file “TIMTCO2A.LBL”. The label describes the
data product file “TIMTCO2A.IMG” which contains a HEADER object followed by an IMAGE
object.

PDS_VERSI ON_I D = PDS3

/* PDS | abel for a TIMS i nage */

RECORD_TYPE = FI XED_LENGTH
RECORD_BYTES = 638
FI LE_RECORDS = 39277

/* Pointers to objects */

Appendix A. PDS Data Object Definitions A-53

A MAGE_HEADER
A MAGE

(" TI MTCO2A. | MG', 1)
(" TI MTCO2A. | MG', 2)

/* 1 mage description */

DATA SET_ID
PRODUCT | D

| NSTRUVENT _HOST_NAME
| NSTRUVENT _NANE

"C130- E- TI M5- 2- EDR- | MAGE- V1. 0"

"TI MTCO2A"

"NASA C- 130 Al RCRAFT"

"THERMAL | NFRARED MULTI SPECTRAL SCANNER®

TARGET _NAME = EARTH
FEATURE _NANE = "TRAI L CANYON FAN'
START_TI ME = 1989-09-29T21: 47: 352
STOP_TI ME = 1989- 09-29T21: 47: 35Z
CENTER _LATI TUDE = 36. 38
CENTER_LONG TUDE = 116. 96
| NCI DENCE_ANGLE = 0.0
EM SSI ON_ANGLE = 0.0
/* Description of objects */
OBJECT = | MAGE_HEADER
BYTES = 638
RECORDS =1
HEADER TYPE = VI CAR2
| NTERCHANGE _FORMAT = BI NARY
NDESCRI PTI ON = "VI CAR2. TXT"
END_OBJECT = | MAGE_HEADER
OBJECT = | MACGE
LI NES = 6546
LI NE_SAMPLES = 638
SAMPLE TYPE = UNSI GNED | NTEGER
SAMPLE BI TS =8
SAVPLE BI T_NMASK = 2#11111111#%
BANDS =6
BAND_ STORAGE TYPE = LI NE_I NTERLEAVED
END_OBJECT = | MAGE

END

A-54 Appendix A. PDS Data Object Definitions

A.17 HISTOGRAM

The HISTOGRAM object is a sequence of numeric values that provides the number of
occurrences of adata value or arange of data values in a data object. The number of itemsin a
histogram will normally be equal to the number of distinct values allowed in afield of the data
object. For example, an 8-bit integer field can have a maximum of 256 values, and would result
in a 256 item histogram. HISTOGRAMs may be used to bin data, in which case an offset and
scaling factor indicate the dynamic range of the data represented.

The following equation allows the calculation of the range of each bin in the histogram:

bin_lower_boundary = bin_element * SCALING_FACTOR + OFFSET

A.17.1 Required Keywords

1. ITEMS
2. DATA_TYPE
3. ITEM_BYTES

A.17.2 Optional Keywords

BYTES
INTERCHANGE_FORMAT
OFFSET
SCALING_FACTOR

E N

A.17.3 Required Objects

None

A.17.4 Optional Objects

None

Appendix A. PDS Data Object Definitions

A.175 Example

PDS_VERSI ON_I D
/ *

RECORD_TYPE
RECORD_BYTES
FI LE_RECORDS
LABEL_RECORDS
[* PO NTERS TO START

A MAGE_HI STOGRAM
N VAGE

/*

DATA SET I D
PRODUCT | D

SPACECRAFT_NANME

TARGET _NAMVE

START_TI ME

STOP_TI ME
SPACECRAFT_CLOCK_START_TI ME
SPACECRAFT_CLOCK_STOP_TI ME
PRODUCT_CREATI ON_TI ME

ORBI T_NUVBER

FI LTER_NAME

| MAGE_I D

| NSTRUVENT _NAVE

NCTE
/* SUN RAYS EM SSI ON,

SOURCE_PRODUCT_I D
EM SSI ON_ANGLE

| NCI DENCE_ANGLE
PHASE_ANGLE

/*

OBJECT
| TEMS
DATA TYPE
| TEM BYTES
END_OBJECT

OBJECT
LI NES
LI NE_SAMPLES
SAMPLE_TYPE
SAMPLE_BI TS
SAMVPLE_BI T_MASK
CHECKSUM

PDS3

FI LE FORVAT AND LENGTH */

FI XED_LENGTH
956

965

3

RECORDS OF OBJECTS IN FILE */

| MAGE DESCRI PTI ON */

I NCI DENCE,

4
6

"\VOL/ VO2- M VI S- 5- DI M V1. 0"

" MGL5NO22- GRN- 666A"

VI KI NG_ORBI TER 1

MARS

1978- 01- 14T02: 00: 00

1978- 01- 14T02: 00: 00

UNK

UNK

1995- 01- 01T00: 00: 00

666

GREEN

" MGL5NO22- GRN 666A"

{ VI SUAL_| MAG NG_SUBSYSTEM CAMERA A,
VI SUAL_| MAGI NG_SUBSYSTEM _CAMERA_B}

"MARS MULTI - SPECTRAL MDI M SERI ES"

AND PHASE ANGLES OF | MAGE CENTER*/

"666A36"
21.794
66. 443
46. 111

DESCRI PTI ON OF OBJECTS CONTAI NED I N FI LE */

| MAGE_HI STOGRAM
256

VAX_| NTEGER

4

| MAGE_HI STOGRAM

I MAGE

960

956

UNSI GNED_| NTEGER
8

2#11111111#
65718982

A-55

A-56 Appendix A. PDS Data Object Definitions

/[* I/ F = SCALI NG_FACTOR*DN + OFFSET, CONVERT TO | NTENSI TY/ FLUX */

SCALI NG_FACTOR
OFFSET

0. 001000
0.0

/* OPTI MUM COLOR STRETCH FOR DI SPLAY OF COLOR | MAGES */

STRETCHED FLAG = FALSE

STRETCH M NI MUM = (53, 0)

STRETCH_MAXI MUM = (133, 255)
END_OBJECT = | MAGE

END

Appendix A. PDS Data Object Definitions A-57

A.18 HISTORY

A HISTORY object is adynamic description of the history of one or more associated data objects
in afile. It supplements the essentially static description contained in the PDS label.

The HISTORY object contains text in aformat similar to that of the ODL statements used in the
label. It identifies previous computer manipulation of the principal data object(s) in thefile. It
includes an identification of the source data, processes performed, processing parameters, as well
as dates and times of processing. It isintended that the history be available for display, be
dynamically extended by any process operating on the data, and be automatically propagated to
the resulting data file. Eventually, it might be extracted for loading in detailed level catal ogs of
data set contents.

The HISTORY object is structured as a series of History Entries, one for each process which has
operated on the data. Each entry contains a standard set of ODL element assignment statements,
delimited by “GROUP = program_name” and “END_GROUP = program_name” statements. A
subgroup in each entry, delimited by “GROUP = PARAMETERS” and “END_GROUP =
PARAMETERS’, contains statements specifying the values of all parameters of the program.

A.181 HISTORY ENTRY ELEMENTS

Attribute Description

VERSION_DATE Program version date, 1SO standard format.
DATE_TIME Run date and time, SO standard format.
NODE_NAME Network name of computer.
USER_NAME Username.

SOFTWARE_DESC Program-generated (brief) description.
USER_NOTE User-supplied (brief) description.

Unlike the above elements, the names of the parameters defined in the PARAMETERS subgroup
are uncontrolled, and must only conform to the program.

Thelast entry in aHISTORY object isfollowed by an END statement. The HISTORY object, by
convention, follows the PDS label of the file, beginning on arecord boundary, and is located by a
pointer statement in the label. There are no required elements for the PDS label description of the
object; it is represented in the label only by the pointer statement, and OBJECT = HISTORY and
END_OBJECT = HISTORY statements.

The HISTORY capability has been implemented as part of the Integrated Software for Imaging
Spectrometers (ISIS) system (see QUBE object definition). 1SIS QUBE applications add their
own entries to the QUBE file's cumulative HISTORY object. ISIS programs run under NASA's
TAE (Transportable Applications Executive) system, and are able to automatically insert all

A-58 Appendix A. PDS Data Object Definitions

parameters of their TAE procedure into the HISTORY entry created by the program. Consult the
ISIS System Design document for details and limitations imposed by that system. (See the QUBE
object description for further references.)

A.18.2 Required Keywords

None

A.18.3 Optional Keywords

None

A.18.4 Required Objects

None

A.185 Optional Objects

None

A.18.6 Example

The following single-entry HISTORY object is from a Vicar-generated PDS-labeled QUBE file.
(See the QUBE object example.) Thereis only one entry because the QUBE (or rather its label)
was generated by a single program, VISIS. A QUBE generated by multiple 1SIS programs would
have multiple history entries, represented by multiple GROUPs in the HISTORY object.

The diagram following illustrates the placement of the example HISTORY object within a
QUBE data product with an attached PDS label.

Appendix A. PDS Data Object Definitions A-59

CCSD...
. PDS
AHISTORY = LABEL
END
GROUP=VISIS
HISTORY
END-GROUP=VISIS
END
QUBE
OBJECT = H STORY
GROUP = VISIS
VERSI ON_DATE 1990-11-08

1991-07- 25T10: 12: 52
"I'SIS cube file with PDS | abel has
product by MPL using the foll ow ng

DATE_TI ME

SOFTWARE_DESC
been generated as systenati
prograns:

o I 1nnu

NI MSMERGE to create EDR s;

NIMSCMM to create the merged nosaic & geonetry cube;
H ST2D to create a two-di nensi onal histogram
SPECPLOT to create the spectral plots;

TRAN, F2, and INSERT3D to create the SI| cube;
VISISto create the I SIS cube."

USER_NOTE = "VPDI N1/ Footprint, Linbfit,
Hei ght =50"
GROUP PARANVETERS

/*EDR accessed through M PL Catal og*/

EDR_FI LE_NANME

| MAGE_| D NULL

SPI CE_FI LE_NAME "N A

SPI KE_FI LE_NAME "M PL: [M PL. GLL] BOOM OBSCURATI ON. NI M'
DARK_VALUE_FI LE_NAVE "N A

CAL| BRATI ON_FI LE_NANME
MERGED_MOSAI C_FI LE_NANME

" NDAT: NI MSGS2. CAL"
"NDAT: VPDI N1_DN _FP_LF_H50. CUB"

DARK_| NTERPOLATI ON_TYPE NOUPDAT
PHOTOVETRI C_CORRECTI ON_TYPE = NONE
CUBE_NI MSEL_TYPE NOCAL

BI NNI NG_TYPE FOOTPRNT
FI LL_BOX_SI ZE 0

FI LL_M N_VALI D_PI XELS 0

SUMMARY | MAGE_RED | D 0

A-60

SUMMARY_| MAGE_GREEN | D
SUMMARY | MAGE_BLUE_I D
ADAPT_STRETCH_SAT_FRAC
ADAPT_STRETCH_SAMP_FRAC
RED_STRETCH_RANGE
GREEN_STRETCH_RANGE
BLUE_STRETCH_RANGE
END_GROUP

END_GROUP

END_OBJECT

END

Appendix A. PDS Data Object Definitions

0
0
0. 000000

0. 000000

(0, 0)
(0, 0)
(0, 0)
PARAMVETERS

VI SIS

HI STORY

Appendix A. PDS Data Object Definitions A-61

A.19 IMAGE

An IMAGE object is atwo-dimensional array of values, all of the same type, each of whichis
referred to as a sample. IMAGE objects are normally processed with special display toolsto
produce avisual representation of the samples by assigning brightness levels or display colorsto
the values. An IMAGE consists of a series of lines, each containing the same number of samples.

The required IMAGE keywords define the parameters for simple IMAGE objects:

* LINESisthe number of linesin the image.

* LINE_SAMPLES isthe number of samplesin each line.
SAMPLE_BITSisthe number of bitsin each individual sample.
» SAMPLE_TY PE defines the sample data type.

In more complex images, each individual line may have some attached data which are not part of
the image itself (engineering data, checksums, time tags, etc.). In this case the additional, non-
image parameters are accounted for as either LINE_PREFIX_BYTES or
LINE_SUFFIX_BYTES, depending on whether they occur before or after the image samplesin
the line. These keywords indicate the total number of bytes used for the additional data, so that
software processing the image can clip these bytes before attempting to display or manipulate the
image. The structure of the prefix or suffix bytesis most often defined by a TABLE object (in the
same label), which will itself have ROW_SUFFIX_BYTES or ROW_PREFIX_BYTES, to alow
table-processing software to skip over theimage data. Figure A.1 illustrates the layout of prefix
and suffix bytes around an image.

LINES =10 ~4— LINE SAMPLES =15 — Record
s 1

P

R U 2

E F

F F

| I

X X .
10

N

\ SAMPLE BITS =8

SAMPLE_TYPE = UNSIGNED_INTEGER

Figure A.1 - Prefix and Suffix Bytes Attached to an Image

A-62 Appendix A. PDS Data Object Definitions

Sometimes a single image is composed of several bands of data. For example, a color image for
video display may actually consist of three copies of the image: onein red, onein green and one
in blue. Each logical sample corresponds to one value for each of the bands. In this case, the
keyword BANDS is used to indicate the presence of multiple bands of data.
BAND_STORAGE_TY PE indicates how the banded values are organized:

» SAMPLE_INTERLEAVED meansthat in each line, all band values for each sample are
adjacent in the line. So in the above example of an RGB image, each line would look like
this (numbers are sample numbers, RGB = red, green, blue):

1R1G 1B 2R 2G 2B 3R 3G 3B ...

* LINE_INTERLEAVED means that successive lines contain the band values for
corresponding samples. Continuing with the RGB example, the first physical linesin the
image data would represent the first display line of theimage, first in red, then green, then
blue:

1R 2R 3R 4R . ..
1G 2G 3G 4G . ..
1B 2B 3B 4B ...

By default, IMAGE objects should be displayed so that the lines are drawn from left to right and
top to bottom. Other organizations can be indicated by using the LINE_DISPLAY _DIRECTION
and SAMPLE_DISPLAY_DIRECTION keywords. Figure A.2 illustrates band storage schemes
and the related keyword values.

Appendix A. PDS Data Object Definitions A-63

BANDS = 3, BAND_STORAGE_TYPE = BAND_SEQUENTIAL BAND_STORAGE_TYPE=LINE_INTERLEAVED
LINE 1
BLUE LINE 2
<
RSNt LSRN W
LINE 2 RED N LINES NN
LINE 3 LINE 6
LN N wer (UL
LINE 6 NN LRNES ‘ \&&&§
LINE 7 LINE 9
LINE 8 ETC...

BAND_NAME = (RED, GREEN, BLUE)

BAND_STORAGE_TYPE=SAMPLE_INTERLEAVED

LINE 1 §
LINE 2 b\\\
LINE 3 §
LINE 4 §
ETC:

Figure A.2 — Keywords for a Multi-Band I mage

A.19.1 Required Keywords

LINES
LINE_SAMPLES
SAMPLE_TYPE
SAMPLE_BITS

E N

A.19.2 Optional Keywords

BAND_SEQUENCE
BAND_STORAGE_TYPE
BANDS

CHECKSUM
DERIVED_MAXIMUM

agrwWwbdPE

A-64

6. DERIVED _MINIMUM
7. DESCRIPTION

8. ENCODING TYPE

9. FIRST _LINE

10. FIRST_LINE_SAMPLE

11. INVALID_CONSTANT

12. LINE_PREFIX_BYTES

13. LINE_SUFFIX_BYTES

14. MISSING _CONSTANT

15. OFFSET

16. SAMPLE_BIT_MASK

17. SAMPLING_FACTOR

18. SCALING_FACTOR

19. SOURCE_FILE_NAME

20. SOURCE_LINES

21. SOURCE_LINE_SAMPLES
22. SOURCE_SAMPLE_BITS
23. STRETCHED FLAG

24. STRETCH_MINIMUM

25. STRETCH_MAXIMUM

A.19.3 Required Objects

None

A.19.4 Optional Objects

1. WINDOW

A.19.5 Example

Appendix A. PDS Data Object Definitions

Thisis an example of an (attached) IMAGE label for acolor digital mosaic image from the Mars
Digital Image Map CD-ROMs. It includes a CHECK SUM to support automated volume
production and validation, a SCALING_FACTOR to indicate the relationship between sample
values and geophysical parameters and stretch keywords to indicate optimal values for image

display.
PDS_VERSI ON_I D

RECORD_TYPE
RECORD_BYTES
FI LE_RECORDS
LABEL_RECORDS

PDS3

FI XED_LENGTH
956

965

3

Appendix A. PDS Data Object Definitions

A MAGE_HI STOGRAM
A MAGE

DATA _SET_ID
PRODUCT | D
SPACECRAFT_NAME
TARGET_NAME

| MAGE_TI ME
START_TI ME
STOP_TI ME

SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

PRODUCT _CREATI ON_TI ME
ORBI T_NUMBER

FI LTER_NAME

| MAGE_| D

| NSTRUVENT _NANE

NOTE
SOURCE_PRODUCT | D
EM SSI ON_ANGLE

| NCI DENCE_ANGLE
PHASE_ANGLE

4
6

"\VOL/ VO2- M VI S- 5- DI M V1. 0"
" MGL5N022- GRN- 666A"
VI KI NG_ORBI TER 1
MARS

1978- 01- 14T02: 00: 00
UNK

UNK

UNK

UNK

1995- 01- 01T00: 00: 00
666

GREEN

" MGL5N022- GRN- 666A"

{ VI SUAL_I MAGI NG_SUBSYSTEM CAMERA A,
VI SUAL_| MAGI NG_SUBSYSTEM CAMERA_B}

"MARS MULTI - SPECTRAL MDI M SERI ES'

"666A36"
21.794
66. 443
46. 111

/* DESCRI PTI ON OF OBJECTS CONTAINED I N FI LE */

OBJECT
| TEMS
DATA TYPE
| TEM BYTES
END_OBJECT

OBJECT
LI NES
LI NE_SAVPLES
SAVPLE_TYPE
SAVPLE_BI TS
SAVPLE_BI T_MASK
CHECKSUM
SCALI NG_FACTOR

OFFSET
STRETCHED_FLAG

STRETCH_M NI MUM
STRETCH_MAXI MUM
END_OBJECT

END

| MAGE_HI STOGRAM
256

VAX_| NTEGER

4

| MAGE_HI STOGRAM

| MAGE

960

956

UNSI GNED_| NTEGER
8

2#11111111#
65718982

0. 001000

/* 1/'F = scaling factor*DN+of f set,

/* convert to intensity/flux.
0.0
FALSE

*/
*/

[* Optinmum color stretch for display

/* of color inmages.

(53, 0)
(133, 255)
| MAGE

*/

A-65

*/

A-66 Appendix A. PDS Data Object Definitions

A.20 INDEX_TABLE

The INDEX_TABLE object is a specific type of a TABLE object that provides information about
the data stored on an archive volume. The INDEX_TABLE contains one row for each datafile
(or data product label file, in the case where detached |abels are used) on the volume. Thetableis
formatted so that it may be read directly by many data management systems on various host
computers: al fields (columns) are separated by commas; character fields are enclosed in double
guotation marks; and each record ends in a carriage return/line feed sequence.

The columns of an INDEX_TABLE contain path information for each file, plus values extracted
from keywords in the PDS labels. Columns are selected to allow users to a) search the table for
specific files of interest; and b) identify the exact location of the file both on the volume and in
the PDS catalog. In general, the columns listed in Section A.20.5.1 as optional are used for
searching the table; the required columns listed in Section A.20.4.1 provide the identification
information for each file. Where possible the PDS keyword name should be used as the NAME
value in the corresponding COLUMN definition.

Note: See Section 17.2 for information about the use of the constants “N/A”, “UNK” and
“NULL” inan INDEX_TABLE.

A.20.1 INDEX_TABLEsUnder PreviousVersion of the Standards

Prior to version 3.2 of the Standards, the INDEX_TY PE keyword was optional. Cumulative
indices were identified by their filenames, which were (and still are) of the form
“CUMINDEX.TAB” or “axxCMIDX.TAB” (with axx representing up to three al phanumeric
characters). So, when INDEX_TYPE is not present, it defaultsto “CUMULATIVE” in
cumulative index files (that is, file with filenames as above) and “SINGLE” in all other index
files.

A.20.2 Required Keywords

INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES
INDEX_TYPE

agrwWDNE

A.20.3 Optional Keywords

1. NAME
2. DESCRIPTION

Appendix A. PDS Data Object Definitions A-67

3. INDEXED_FILE_NAME
4. UNKNOWN_CONSTANT
5. NOT_APPLICABLE_CONSTANT

A.204 Required Objects

1. COLUMN

A.204.1 Required COLUMN Objects

The following COLUMN objects (as identified by the COLUMN_NAME keyword) are required
to beincluded in the INDEX_TABLE object:

COLUMN_NAME

FILE_SPECIFICATION_NAME, or PATH_NAME and FILE_NAME
PRODUCT_ID ™

VOLUME_ID "

DATA_SET ID "

PRODUCT_CREATION_TIME "

LOGICAL_VOLUME_PATH_NAME " (must be used with PATH_NAME
and FILE_NAME for alogical volume)

SUu s~ wWNE

* If the value is constant across the data in the index table, this keyword can appear
in the index table' slabdl. If the valueis not constant, then a column of the given name
must be used.

*x PRODUCT _ID isnot required if it has the same value as FILE_NAME or
FILE_SPECIFICATION_NAME.

A.204.2 Required Keywords (for Required COLUMN Objects)

NAME
DATA_TYPE
START_BYTE
BYTES
DESCRIPTION

agrwWwbdPE

A.20.5 Optional Objects

None

A-68 Appendix A. PDS Data Object Definitions

A.205.1 Optional COLUMN Objects (NAME=)

The following COLUMN objects (as identified by the COLUMN_NAME keyword) may be
optionally included in the INDEX_TABLE object:

COLUMN_NAME

MISSION_NAME
INSTRUMENT_NAME (or ID)

INSTRUMENT_HOST_NAME (or ID), or SPACECRAFT_NAME (or ID)
TARGET_NAME

PRODUCT_TYPE

MISSION_PHASE_NAME

VOLUME_SET_ID

START_TIME

. STOP_TIME

10. SPACECRAFT_CLOCK_START_COUNT

11. SPACECRAFT_CLOCK_STOP_COUNT
12. any other search columns

CoNOA~WNE

A.20.6 Example

PDS_VERSI ON_| D PDS3

RECORD _TYPE = FI XED_LENGTH
RECORD_BYTES = 180
FI LE_RECORDS = 220
DESCRI PTI ON = "INDEX. TAB lists all data files on this
vol unme"
A1 NDEX_TABLE = "1 NDEX. TAB"
OBJECT = | NDEX_TABLE
| NTERCHANGE _FORMAT = ASCI |
ROW BYTES = 180
ROVWS = 220
COLUMNS =9
I NDEX_TYPE = SI NGLE
| NDEXED FI LE_NANME = {"* AVMD',"* . ION'","*. TIM,"*. TRO'",
"EOVEA","*LOLIT, " .M F", "R MPDY
'* ODF","*.ODR',"*.0DS","*.SFO',
'* SCE","*.TDF"}
OBJECT = COLUWN
NANVE = VOLUME_I D
DESCRI PTI ON = "ldentifies the volume containing the

naned fil e"

DATA _TYPE CHARACTER

Appendix A. PDS Data Object Definitions

START_BYTE
BYTES
END_OBJECT

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NANE
DESCRI PTI ON
DATA TYPE
START_BYTE
BYTES
END_OBJECT

OBJECT
NANE
DESCRI PTI ON
DATA TYPE
START_BYTE
BYTES
END_OBJECT

OBJECT
NAVE

2
9
COLUWN

COLUWN
DATA SET_ID
"The data set

val ues i ncl ude

CHARACTER
14

25

COLUWN

COLUWN
PATH_NAVE

identifier.

A-69

Accept abl e

"MO-MRSS-1-O DR-V1.0" "

"Path to directory containing file.
Accept abl e val ues i ncl ude:

AMD
ION ,
TIM,
TRO ,
VEA' |
LIT,
MF,

SFO ,
SCE',
TDF . "
CHARACTER
42

9

COLUWN

and

COLUWN
FI LE_NAVE

"Nane of file in archive"

CHARACTER
54

12

COLUWN

COLUWN
PRODUCT_I D
"Origina
CHARACTER
69

33

COLUWN

COLUWN
START_TI ME

file name on MO PDB or

SOPC!

A-70 Appendix A. PDS Data Object Definitions

DESCRI PTI ON = "Time at which data in the file begin
given in the format 'YYYY- M\ DDThh: nm ss' . "
DATA TYPE = CHARACTER
START_BYTE = 105
BYTES = 19
END OBJECT = COLUWN
OBJECT = COLUWN
NANVE = STOP_TI ME
DESCRI PTI ON = "Time at which data in the file end
given in the format 'YYYY- M\ DDThh: nm ss' . "
DATA TYPE = CHARACTER
START_BYTE = 127
BYTES = 19
END OBJECT = COLUWN
OBJECT = COLUWN
NANVE = PRODUCT_CREATI ON_TI ME
DESCRI PTI ON = "Date and tine that file was created."”
DATA TYPE = CHARACTER
START_BYTE = 149
BYTES = 19
END_OBJECT = COLUWN
OBJECT = COLUWN
NAVE = FILE_SI ZE
DESCRI PTI ON = "Nunber of bytes in file, not including
| abel . "
DATA TYPE = "ASClI | | NTEGER"
START_BYTE = 170
BYTES =9
END_OBJECT = COLUWN
END_OBJECT = | NDEX_TABLE

END

Appendix A. PDS Data Object Definitions A-71

A.21 PALETTE

The PALETTE object, a sub-class of the TABLE object, contains entries which represent color
table assignments for values (i.e., SAMPLES) contained in an IMAGE.

If the PALETTE is stored in a separate file from the IMAGE object, then it should be stored in
ASCII format as 256 rows, each with 4 columns. The first column contains the SAMPLE vaue
(running from 0—255 for an 8-bit SAMPLE, for example), and the remaining three columns
contain the relative amount (a value from O to 255) of each primary color to be assigned for that
SAMPLE value.

If the PALETTE is stored in the same file as the IMAGE object, then the PALETTE should be
stored in BINARY format as 256 consecutive 8-bit values for each primary color (RED, GREEN,
BLUE) resulting in a 768-byte record.

A.21.1 Required Keywords

INTERCHANGE_FORMAT
ROWS

ROW_BYTES

COLUMNS

AwWDhPRE

A.21.2 Optional Keywords

1. DESCRIPTION
2. NAME

A.21.3 Required Objects

1. COLUMN

A.21.4 Optional Objects

None

A.215 Example

The examples below illustrate both types of PALETTE objects (ASCII and BINARY). The first
isexampleis acomplete label for an ASCII PALETTE object:

A-72

PDS_VERSI ON_| D
RECORD_TYPE
RECORD BYTES

FI LE_RECORDS
APALETTE

/* 1 mage Pal ette description

SPACECRAFT_NANME
M SSI ON_PHASE_NANME
TARGET _NAVE

PRODUCT I D

| MAGE_I D

| NSTRUVENT _NANVE
PRODUCT_CREATI ON_TI ME
NOTE

/* Description of an ASCI|

OBJECT
| NTERCHANGEFORMAT
RONS
ROW BYTES
COLUWNS

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NANE
DESCRI PTI ON
DATA TYPE
START_BYTE
BYTES
END_OBJECT

OBJECT
NANE
DESCRI PTI ON
DATA TYPE
START_BYTE
BYTES
END_OBJECT

OBJECT
NANE
DESCRI PTI ON
DATA TYPE
START_BYTE

Appendix A. PDS Data Object Definitions

PDS3

FI XED_LENGTH
80

256

"PALETTE. TAB"

*
MAGELLAN
PRI MARY_M SSI ON
VENUS
" GEDR- MERC. 1; 2"
" GEDR- MERC. 1; 2"
"RADAR SYSTEM'
1995- 01- 01T00: 00: 00

"Palette for browse inmage"

PALETTE obj ect */

PALETTE
ASCl |
256

80

4

COLUWN
SAMPLE

"DN val ue for red, green,

intensities"
ASCI | _I NTEGER
1

3

COLUWN
RED

"Red intensity (0 - 255)"

ASCI | _| NTEGER
6
3

COLUWN
GREEN

bl ue

"Green intensity (0 — 255)"

ASCI | _| NTEGER
11
3

COLUWN
BLUE

"Blue intensity (0 — 255)"

ASCI | _| NTEGER
16

Appendix A. PDS Data Object Definitions

BYTES
END_OBJECT
END_OBJECT
END

A-73

Thislabel fragment illustrates the definition of a binary PALETTE object:

/* Description of a Bl NARY PALETTE object */

OBJECT
| NTERCHANGEFORMAT
RONG
ROW BYTES
COLUWNS

OBJECT
NANE
DATA TYPE
START_BYTE
| TEMS
| TEM BYTES
END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
| TEMS
| TEM BYTES
END_OBJECT

OBJECT
NANE
DATA TYPE
START_BYTE
| TEMS
| TEM BYTES
END_OBJECT
END_OBJECT

PALETTE
Bl NARY
1

768

3

COLUWN
RED

UNSI GNED_| NTEGER
1

256

1

COLUWN

COLUWN
GREEN

UNSI GNED_| NTEGER
257

256

1

COLUWN

COLUWN
BLUE

UNSI GNED_| NTEGER
513

256

1

COLUWN

PALETTE

A-74 Appendix A. PDS Data Object Definitions

A.22 QUBE

A generalized QUBE object isamultidimensional array (called the core) of sample valuesin
multiple dimensions. The core is homogeneous, and consists of unsigned byte, signed halfword
or floating point fullword elements. QUBES of one to three dimensions may have optional suffix
areas in each axis. The suffix areas may be heterogeneous, with elements of different types, but
each suffix pixel isalways allocated a full word. Special values may be defined for the core and
the suffix areas to designate missing values and several kinds of invalid values, such as
instrument and representation saturation.

The QUBE isthe principal data structure of the ISIS (Integrated Software for Imaging
Spectrometers) system. A frequently used specialization of the QUBE object isthe ISIS Standard
Qube, which is athree-dimensional QUBE with two spatial dimensions and one spectral
dimension. Its axes have the interpretations 'sampl €, 'line' and 'band’. Three physical storage
orders are allowed: band-sequential, line_interleaved (band-interleaved-by-line) and
sample_interleaved (band-interleaved-by-pixd).

An example of a Standard 1SIS Qube is a spectral image qube containing data from an imaging
spectrometer. Such a qube is smultaneously a set of images (at different wavelengths) of the
same target area, and a set of spectra at each point of the target area. Typically, suffix areasin
such a qube are confined to 'backplanes containing geometric or quality information about
individual spectra, i.e. about the set of corresponding values at the same pixel location in each
band.

The following diagram illustrates the general structure of a Standard 1SIS Qube. Note that thisis
aconceptual or “logical” view of the qube.

EXPLODED VIEW of a CORE STRUCTURE
QUBE OBJECT
SPECTRAL
BACKPLANE (BANy
SPATIAL
(LINES)
CORE
SIDEPIANE
Y
BOTTOMPLANE SPATIAL
(SAMPLES)

Figure A.3 — Exploded View of a Qube Object

Appendix A. PDS Data Object Definitions A-75

Some special requirements are imposed by the ISIS system. A QUBE object must be associated
with aHISTORY abject. (Other objects, such as HISTOGRAMs, IMAGEs, PALETTEs and
TABLEs which contain statistics, display parameters, engineering values or other ancillary data,
areoptional.) A special element, FILE_STATE, isrequired in theimplicit FILE object. Some
label information is organized into GROUPS, such as BAND_BIN and
IMAGE_MAP_PROJECTION. The BAND_BIN group contains essential wavelength
information, and is required for Standard ISIS Qubes.

The ISIS system includes routines for reading and writing files containing QUBE objects. Both
'logical’ access, independent of actual storage order, and direct 'physical’ access are provided for
Standard ISIS Qubes. Only physical accessis provided for generalized QUBEs. Most ISIS
application programs operate on Standard 1SIS Qubes. Arbitrary subqubes (‘virtual' qubes) of
existing qubes may be specified for most of these programs. In addition, ISIS includes software
for handling Tables (an I1SIS variant of the PDS Table object) and Instrument Spectral Libraries.

For a complete description, refer to the most recent version of “ISD: ISIS System Design, Build
2", obtainable from the PDS Operator.

NOTE: The following required and optional elements of the QUBE object are 1SIS-specific.

Since the ISIS system was designed before the current version of the Planetary Science Data
Dictionary, some of the element names conflict with current PDS nomenclature standards.

A.22.1 Required Keywords (Generalized Qube and Standard 1SIS Qube)

AXES Number of axes or dimensions of qube [integer]
AXIS NAME Names of axes [sequence of 1-6 literals]
(BAND, LINE, SAMPLE) for Standard Qube
CORE_ITEMS Core dimensions of axes[seq of 1-6 integers]
CORE_ITEM_BYTES Core element size [integer bytes: {1, 2, 4}]
CORE_ITEM_TYPE Core element type
[literal: {UNSIGNED_INTEGER, INTEGER,
REAL}]
CORE_BASE Base value of coreitem scaling [real]
CORE_MULTIPLIER Multiplier for coreitem scaling [real]

'‘true’ value = base + multiplier * 'stored' value
(base = 0.0 and multiplier = 1.0 for REALS)

SUFFIX_BYTES Storage allocation of suffix elements [integer:
always 4]
SUFFIX_ITEMS Suffix dimensions of axes [seq of 1-6 integers|

A-76

CORE_VALID_MINIMUM

CORE_NULL
CORE_LOW_INSTR_SATURATION

CORE_HIGH_INSTR_SATURATION
CORE_LOW_REPR_SATURATION

CORE_HIGH_REPR_SATURATION

Appendix A. PDS Data Object Definitions

Minimum valid core value -- values below this
value are reserved for 'special’ values, of which 5
are currently assigned [integer or non-decimal
integer: these values are fixed by SIS convention
for each allowable item type and size -- see ISD for
details]

Specia valueindicating 'invalid' data

Specia value indicating instrument saturation at the
low end

Special value indicating instrument saturation at the
high end

Special vaue indicating representation saturation at
thelow end

Specia value indicating representation saturation at
the high end

A.22.2 Required Keywords (Standard | SIS Qube) and Optional Keywords

(Generalized Qube)

CORE_NAME

CORE_UNIT
BAND_BIN_CENTER

BAND_BIN_UNIT
BAND_BIN_ORIGINAL_BAND

Name of value stored in core of qube [literal, e.g.
SPECTRAL_RADIANCE]
Unit of value stored in core of qube [literal]

Wavelengths of bandsin a Standard Qube
[sequence of reals]

Unit of wavelength [literal, e.g. MICROMETER]

Original band numbers, referring to a Qube of
which the current qube is a subgube. In the original
gube, these are sequential integers.[sequence of
integers|

A.22.3 Optional Keywords (Generalized Qube and Standard | SIS Qube)

BAND_BIN_WIDTH
BAND_BIN_STANDARD_DEVIATION

BAND_BIN_DETECTOR

Width (at half height) of spectral response of bands
[sequence of reals|

Standard deviation of spectrometer values at each
band [sequence of reals|

Instrument detector number of band, where relevant
[sequence of integers]

Appendix A. PDS Data Object Definitions

BAND_BIN_GRATING_POSITION

A.22.3.1
qube):

A-77

Instrument grating position of band, where relevant
[sequence of integers]

Required Keywords (for each suffix present in a 1-3 dimensional

Note: These must be prefixed by the specific AXIS NAME. These are SAMPLE, LINE and
BAND for Standard 1SIS Qubes. Only the commonly used BAND variants are shown:

BAND_SUFFIX_NAME
BAND_SUFFIX_UNIT
BAND_SUFFIX_ITEM_BYTES

BAND_SUFFIX_ITEM_TYPE

BAND_SUFFIX_BASE
BAND_SUFFIX_MULTIPLIER

BAND_SUFFIX_VALID_MINIMUM
BAND_SUFFIX_NULL
BAND_SUFFIX_LOW_INSTR_SAT
BAND_SUFFIX_HIGH_INSTR_SAT
BAND_SUFFIX_LOW_REPR_SAT
BAND_SUFFIX_HIGH_REPR_SAT

A.224 Example

Names of suffix items [sequence of literals)

Units of suffix items [sequence of literals]

Suffix item sizes [sequence of integer bytes{1, 2,
4}]

Suffix item types [sequence of literals:
{UNSIGNED_INTEGER, INTEGER, REAL, ...}]

Base values of suffix item scaling [sequence of
reals] (see corresponding core element)

Multipliers for suffix item scaling [sequence of
reals] (see corresponding core element)

Minimum valid suffix values
...and assigned special values
[sequences of integers or reals]
(see corresponding core
element definitions for

details)

The following label describes 1SIS QUBE data from the Galileo NIM S experiment. The QUBE
contains 17 bands of NIM S fixed-map mode raw data numbers and 9 backplanes of ancillary
information. In other modes, NIM S can produce data qubes of 34, 102, 204 and 408 bands.

A-78 Appendix A. PDS Data Object Definitions

<+~— 512 — Record

CCSD... 1
AHISTORY =
AQUBE
LABEL
END 24
25
HISTORY E
47
48
QUBE
9362

PDS_VERSI ON | D = PDS3
/* File Structure */

RECORD_TYPE = FI XED_LENGTH
RECORD BYTES = 512

FI LE_RECORDS = 9158
LABEL_RECORDS = 24

FI LE_STATE = CLEAN

AH STORY = 25

OBJECT = H STORY
END_OBJECT = H STORY
AQUBE = 48

OBJECT = QUBE

/* Qube structure: Standard 1SIS QUBE of NIMS Data */

AXES
AXI S_NAME

3
(SAVPLE, LI NE, BAND)

/* Core description */

CORE_| TEMS = (229, 291, 17)
CORE_| TEM BYTES =2

CORE_| TEM TYPE = VAX_| NTEGER
CORE_BASE = 0.0
CORE_MULTI PLI ER = 1.0
CORE_VALI D_M NI MUM = -32752
CORE_NULL = -32768
CORE_LOW REPR SATURATION = -32767
CORE_LOW | NSTR_SATURATION = - 32766

Appendix A. PDS Data Object Definitions A-79

CORE_Hl GH_I NSTR_SATURATI ON
CORE_H GH_REPR_SATURATI ON

- 32765
- 32764

CORE_NAME RAW DATA NUMBER
CORE_UNI'T DI MENSI ONLESS
PHOTOVETRI C_CORRECTI ON_TYPE NONE

[* Suffix description */

SUFFI X_BYTES =4

SUFFI X_| TEMS = (0,0,9)

BAND_SUFFI X_NANME (LATI TUDE, LONG TUDE, | NCI DENCE_ANGLE
EM SSI ON_ANGLE, PHASE_ANGLE, SLANT_DI STANCE, | NTERCEPT ALTI TUDE
PHASE_ANGLE_STD DEV, RAW DATA NUVBER STD DEV)

BAND_SUFFI X_UNI T = (DEGREE, DEGREE, DEGREE, DEGREE, DEGREE
KI LOVETER, KI LOVETER, DEGREE, DI MENSI ONLESS)

BAND_SUFFI X_I TEM BYTES = (4,4,4,4,4,4,4,4,4)

BAND_SUFFI X_I TEM TYPE = (VAX_REAL, VAX REAL, VAX REAL, VAX_REAL
VAX_REAL, VAX REAL, VAX REAL, VAX REAL, VAX_ REAL)

BAND_SUFFI X_BASE = (0.000000, 0.000000, 0.000000, 0.000000
0. 000000, 0.000000, 0.000000, 0.000000, 0.000000)

BAND_SUFFI X_MULTI PLI ER = (1.000000, 1.000000, 1.000000, 1.000000,
1. 000000, 1.000000, 1.000000, 1.000000, 1.000000)

BAND _SUFFI X_VALID M NI MUM = (16#FFEFFFFF#, 16#FFEFFFFF#,

16#FFEFFFFF#, 16#FFEFFFFF#, 16#FFEFFFFF#, 16#FFEFFFFF#,
16#FFEFFFFF#, 16#FFEFFFFF#, 16#FFEFFFFF#)

BAND_SUFFI X_NULL = (16#FFFFFFFF#, 16#FFFFFFFF#,
16#FFFFFFFF#, 16#FFFFFFFF#, 16#FFFFFFFF#, 16#FFFFFFFF#,
16#FFFFFFFF#, 16#FFFFFFFF#, 16#FFFFFFFF#)

BAND_SUFFI X_LOW REPR_SAT = (16#FFFEFFFF#, 16#FFFEFFFF#,
16#FFFEFFFF#, 16#FFFEFFFF#, 16#FFFEFFFF#, 16#FFFEFFFF#,
16#FFFEFFFF#, 16#FFFEFFFF#, 16#FFFEFFFF#)

BAND_SUFFI X_LOW | NSTR_SAT = (16#FFFDFFFF#, 16#FFFDFFFF#,
16#FFFDFFFF#, 16#FFFDFFFF#, 16#FFFDFFFF#, 16#FFFDFFFF#,
16#FFFDFFFF#, 16#FFFDFFFF#, 16#FFFDFFFF#)

BAND_SUFFI X_HI GH_| NSTR_SAT = (16#FFFCFFFF#, 16#FFFCFFFF#,
16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#,
16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#)

BAND_SUFFI X_HI GH_REPR _SAT = (16#FFFBFFFF#, 16#FFFBFFFF#,
16#FFFBFFFF#, 16#FFFBFFFF#, 16#FFFBFFFF#, 16#FFFBFFFF#,
16#FFFBFFFF#, 16#FFFBFFFF#, 16#FFFBFFFF#)

BAND_SUFFI X_NOTE = "The backpl anes contain 7 geonetric
paraneters, the standard deviation of one of them the standard
devi ation of a selected data band, and 0 to 10 'spectral index'
bands, each a user-specified function of the data bands. (See
t he BAND_ SUFFI X _NAME val ues.)

Longi tude ranges fromO to 360 degrees, with positive direction
speci fied by POSI TI VE_LONG TUDE DI RECTION in the
| MAGE_MAP_PRQJECTI ON gr oup.

| NTERCEPT_ALTI TUDE cont ai ns val ues for the DI FFERENCE bet ween

the Iength of the normal fromthe center of the target body to the
line of sight AND the radius of the target body. On-target points
have zero val ues. Points beyond the maxi mum expanded radi us have

A-80

nul | val ues.

flags. It is neaningfu

Appendix A. PDS Data Object Definitions

This plane thus al so serves as a set of 'off-linb
only for the ORTHOGRAPHI C and

PO NT_PERSPECTI VE proj ections; otherwi se all values are zero. The
geonetric standard devi ati on backpl ane contai ns the standard

devi ation of the geonetry backpl ane indicated in its NAME, except
that the special value 16#FFFOFFFF# repl aces the standard

devi ati on where the correspondi ng core pixels have been '"filled".

The data band standard deviation plane is conputed for the NI M

data band specified by STD DEV_SELECTED BAND NUMBER.
either a raw data nunber, or spectral radiance, whichever is

i ndi cated by CORE_NAME

The (optional) spectra

This may be

i ndex bands were generated by the Vicar F2

program The correspondi ng BAND_SUFFI X NAME i s an abbreviated
formula for the function used, where Bn should be read ' NI M5 data

band n'.
8."

STD _DEV_SELECTED BAND NUMVBER

/* Data description: genera

DATA _SET_ID

PRODUCT | D
SPACECRAFT_NAME

M SSI ON_PHASE_NANME

| NSTRUVENT _NAVE

| NSTRUVENT | D

A1 NSTRUVENT _DESCRI PTI ON

TARGET_NAME
START_TI ME
STOP_TI ME

NATI VE_START_TI ME
NATI VE_STOP_TI ME
OBSERVATI ON_NANME
OBSERVATI ON_NOTE

| NCI DENCE_ANGLE

EM SSI ON_ANGLE
PHASE_ANGLE
SUB_SOLAR_AZI MUTH
SUB_SPACECRAFT_AZI MUTH
M NI MUM_SLANT_DI STANCE
MAXI MUM_SLANT_DI STANCE

M N_SPACECRAFT_SOLAR DI STANCE
MAX_SPACECRAFT_SOLAR DI STANCE

/* Data description: instrunent

| NSTRUVENT _MODE_| D
GAI N_MODE_| D

For exanpl e:

*/

B4/ B8 represents the ratio of bands 4 and

9

"GO V- NI Ms- 4- MOSAI C- V1. 0"

" XYZ"

GALI LEO_ORBI TER

VENUS_ENCOUNTER

NEAR_| NFRARED_MAPPI NG_SPECTROVETER
NI MS

"NI MSI NST. TXT"

VENUS

1990- 02- 10T01: 49: 582

1990- 02-10T02: 31: 527
180425. 85

180467. 34

' VPDI N1

"VPDI N1 / Footprint, Linbfit,

Hei ght =50"

160. 48

14.01

147. 39
-174.74
-0.80
85684. 10
103175. 00

1. 076102e+08
1. 076250e+08

status */
FI XED MAP
2

Appendix A. PDS Data Object Definitions

CHOPPER MODE_| D
START_GRATI NG _PCsSI TI ON
OFFSET_GRATI NG_PCSI TI ON

MEAN_FOCAL_PLANE_TEMPERATURE
MEAN_RAD_SHI ELD_TEMPERATURE
MEAN_TELESCOPE_TEMPERATURE
MEAN_GRATI NG_TEMPERATURE
MEAN_CHOPPER_TEMPERATURE
MEAN_ELECTRONI CS_TEMPERATURE

GROUP

BAND_BI N_CENTER
1. 458040,

= (0.798777, 0.937873,
1.736630, 2.017250, 2.298800, 2.579060, 2.864540,

A-81

REFERENCE
16
04

85. 569702
123. 636002
139. 604996
142. 580002
142. 449997
287. 049988

BAND_BI N

1. 179840,

3. 144230, 3.427810, 3.710640, 3.993880, 4.277290, 4.561400,

4.843560, 5.126080)
BAND BI N_UNI T
BAND_BI N_ORI Gl NAL_BAND

BAND_BI N_GRATI NG_PCS| TI ON
BAND_BI N_DETECTOR
END_GROUP

GROUP
/* Projection description */
MAP_PRQIECTI ON_TYPE
MAP_SCALE
MAP_RESCLUTI ON
CENTER_LATI TUDE
CENTER_LONG TUDE
LI NE_PRQJECTI ON_OFFSET
SAMPLE_PRQJECTI ON_OFFSET
M NI MUM_LATI TUDE
MAXI MUM_LATI TUDE
M NI MUM_LONG TUDE
MAXI MUM_LONG TUDE
POSI TI VE_LONG TUDE_DI RECTI ON
A _AXI S _RADI US
B_AXI S_RADI US
C _AXI'S_RADI US
REFERENCE_LATI TUDE
REFERENCE_LONG TUDE
MAP_PRQIECTI ON_RCTATI ON
LI NE_FI RST_PI XEL
LI NE_LAST_PI XEL
SAVPLE_FI RST_PI XEL
SAVMPLE_LAST_PI XEL
END_GROUP

END_OBJECT
END

12,

16,

12,

M CROVETER
(1, 2, 3, 4, 5 6, 7, 8, 9,
13, 14, 15, 16, 17)
(16, 16, 16, 16, 16,
16, 16, 16, 16, 16,
(1, 2, 3, 4, 5, 6, 7,
13, 14, 15, 16, 17)
BAND_BI N

10, 11,
16, 16,

16, 16)
8, 9, 10,

16, 16,

11,

| MAGE_MAP_PRQJECTI ON

OBL| QUE_ORTHOGRAPHI C
45. 000

2. 366

12. 00

350. 00

149. 10

85. 10

11. 71

13. 62

349. 62

351. 72

EAST

6101. 000000
6101. 000000
6101. 000000
0. 000000

0. 000000

0. 00

1

229

1

291

| MAGE_MAP_PRQJECTI ON

QUBE

A-82 Appendix A. PDS Data Object Definitions

A.23 SERIES

The SERIES object is a sub-class of the TABLE object. It isused for storing a sequence of
measurements organized in a specific way (e.g., chronologically, by radial distance, etc.). The
SERIES uses the same physical format specification as the TABLE object with additional
sampling parameter information describing the variation between elementsin the series. The
sampling parameter keywords are required for the SERIES object itself, but are optional for the
COLUMN sub-objects, depending on the data organization.

The sampling parameter keywords in the SERIES object represent the variation between the
ROWS of data. For data with regularly-spaced rows, the
SAMPLING_PARAMETER_INTERVAL keyword defines the row-to-row variation. For datain
which rows are irregularly spaced, the SAMPLING_PARAMETER_INTERVAL keyword is
“N/A” and the actual sampling parameter isincluded asa COLUMN in the SERIES.

When the data vary regularly across items of a single column, sampling parameter keywords
appear as part of the COLUMN sub-object. Data sampled at irregular intervals described as
separate columns may also provide sampling parameter information specific to each column.

Optional MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER keywords should be added whenever possible to
indicate the range in which the data were sampled. For data sampled at a single point rather than
over arange, both the MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER are set to the specific value.

The object name“ TIME_SERIES’ is used when the seriesis chronological. In this case the label
keywords START_TIME and STOP_TIME are assumed to indicate the minimum and maximum
timesinthefile. If thisis not the case, the MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER keywords should be used to specify the
corresponding time values for the series.

A.23.1 Required Keywords

INTERCHANGE_FORMAT

ROWS

COLUMNS

ROW_BYTES
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL

NogakrowbdrE

Appendix A. PDS Data Object Definitions A-83

A.23.2 Optional Keywords

NAME

ROW_PREFIX_BYTES
ROW_SUFFIX_BYTES
MINIMUM_SAMPLING_PARAMETER
MAXIMUM_SAMPLING_PARAMETER
DERIVED_MINIMUM
DERIVED_MAXIMUM

DESCRIPTION

N~ WDNE

A.23.3 Required Objects

1. COLUMN

A.23.4 Optional Objects

1. CONTAINER

A.235 Example

This exampleillustrates the use of the SERIES object for data that vary regularly in two ways:
rows of datain the SERIES occur at 60 millisecond intervals, while the column values occur at
03472222 millisecond intervals. Note that, as with other forms of the TABLE object, each row
in a SERIES may contain prefix or suffix bytes, indicated in this case by the
ROW_PREFIX_BYTESinthe TIME_SERIES definition. The structure of the prefix is defined
by the ROW_PREFIX_TABLE object, for which the COLUMN definitions are stored in a
separate file (“ROWPRX.FMT”).

A-84 Appendix A. PDS Data Object Definitions

ENGINEERING TABLE

Rec / \

1 243-byte Eng rec Spare
2 1600 8-bit waveform samples 60 ms
between
rows
—

03472222 ms between samples

801
bytes 1-220 bytes 221-1820
ROW_PREFIX TIME_SERIES
_TABLE

PDS_VERSI ON_| D PDS3
RECORD_TYPE FI XED_LENGTH
RECORD BYTES 1820

FI LE_RECORDS 801

~ENG NEERI NG_TABLE
AROW _PREFI X_TABLE
ATl ME_SERI ES

(" C0900313. DAT", 1)
(" C0900313. DAT", 2)
(" C0900313. DAT", 2)

/* Cbservation description */

DATA SET_ID "V@&2- N- PW&- 2- EDR- WFRM 60MS- V1. 0"
PRCODUCT_I D " C0900313. DAT"

PRCDUCT_CREATI ON_TI ME " UNK"

SPACECRAFT_NAME VOYAGER 2

SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
EARTH_RECEI VED_TI ME

"09003. 13. 002"
"09003. 13. 002"
1989-159T13: 35: 00. 1217

START_TI ME 1989- 157T14: 16: 56. 979Z
STOP_TI ME "N A

M SSI ON_PHASE_NAME NEPTUNE_ENCOUNTER
TARGET_NAME NEPTUNE

Appendix A. PDS Data Object Definitions A-85

/* Instrunent description */
| NSTRUVENT _NANVE

| NSTRUVENT | D

SECTION I D

PLASMA_WAVE_RECEI VER
PV
WERM

/* Object descriptions */

OBJECT = ENG NEERI NG _TABLE
| NTERCHANGE _FORMAT = BI NARY
ROWNG =1
COLUMNS = 106
ROW BYTES = 243
ROW SUFFI X_BYTES = 1577
DESCRI PTI ON = "This table describes the fornmat of

t he engi neering record which is included as the first record in

each PW5 high rate waveformfile. This record contains the first
242 bytes of data extracted fromthe M ssion and Test |nmaging System
(Mrl'S) header record on each file of an imaging EDR tape. A 243rd
byte containing sone flag fields has been added to the table for al
data coll ected during the Neptune encounter."

ANSTRUCTURE = "ENGTAB. FMI™"
END_OBJECT = ENG NEERI NG _TABLE
OBJECT = ROW PREFI X_TABLE
| NTERCHANGE _FORMAT = BI NARY
ROWG = 800
COLUMNS = 47
ROW BYTES = 220
ROW SUFFI X_BYTES = 1600
DESCRI PTI ON = "This table describes the fornmat of

the engi neering data associated with the collection of each row of
wavef orm data (1600 waveform sanpl es)."

A STRUCTURE = " RONPRX. FMT"
END_OBJECT = ROW PREFI X TABLE
OBJECT = TI ME_SERI ES
NAVE = WAVEFORM FRANME
| NTERCHANGE _FORMAT = BI NARY
RONG = 799
COLUMNS =1
ROW BYTES = 1600
ROW PREFI X_BYTES = 220
SAVPLI NG_PARAMETER NANVE = TIME
SAVPLI NG PARAMETER UNI' T = SECOND
SAMPLI NG_PARAMETER | NTERVAL = .06 /* 60 M5 between rows */
DESCRI PTI ON = "This tinme_series consists of up to
800 records (or rows, lines) of PWs waveform sanple data. Each

record 2-801 of the file (or frame) contains 1600 wavef orm sanpl es,
prefaced by 220 bytes of MIS information. The 1600 sanples are
collected in 55.56 nmsec followed by a 4.44 nsec gap. Each 60 nsec
interval constitutes a line of waveform sanples. Each file contains
up to 800 lines of waveform sanples for a 48 sec frane."

OBJECT
NAVE

COLUWN
WAVEFORM_SAMPLES

A-86

Appendix A. PDS Data Object Definitions

DATA TYPE = VBB_UNSI GNED_| NTEGER
START_BYTE = 221

BYTES = 1600

| TEMS = 1600

| TEM BYTES =1

SAVPLI NG_PARAVETER NANE = TIME

SAVPLI NG_PARAMVETER_UNI T = SECOND

SAMPLI NG_PARAMETER | NTERVAL 0. 00003472222 /*time between sanpl es*/

OFFSET =-7.5
VALI D_M NI MUM =0
VALI D_NVAXI MUM = 15

DESCRI PTI ON "The 1-byte waveform sanpl es
constitute an array of waveform nmeasurenments which are encoded into
bi nary values fromO to 15 and nay be re-nmapped to reduce the
artificial zero-frequency component. For exanple, stored values can
be mapped to the followi ng floating point values. The original 4-
bit data sanpl es have been repackaged into 8-bit (1 byte) itemns

wi t hout nodification for archival purposes.\n

0 =-75 1 =-6.52 =-5.5 3 =-4.5
4 =-35 5 =-256 =-1.5 7 =-0.5
8 = 0.5 9 = 1.510 = 2.5 11 = 3.5
12 = 4.5 13 = 5514 = 6.5 15 = 7.5
END_OBJECT = COLUWN
END_OBJECT = TI ME_SERI ES

END

Appendix A. PDS Data Object Definitions A-87

A.24 SPECTRUM

The SPECTRUM object isaform of TABLE used for storing spectral measurements. The
SPECTRUM object is assumed to have a number of measurements of the observation target
taken in different spectral bands. The SPECTRUM object uses the same physical format
specification as the TABLE object, but includes sampling parameter definitions which indicate
the spectral region measured in successive COLUMNSs or ROWSs. The common sampling
parameters for SPECTRUM objects are wavel ength, frequency, or velocity.

A regularly sampled SPECTRUM can be stored either horizontally as a one-row table with a
single column containing n samples (indicated in the COLUMN definition by “ITEMS=n"), or
vertically as a one-column table with n rows where each row contains a sample of the spectrum.
The vertical format allows additional columns to be defined for related parameters for each
sample value (e.g., error bars). These related columns may aso be described in a separate
PREFIX or SUFFIX table.

In the horizontal format, the sampling parameter specifications are included in the COLUMN
definition. For avertically defined SPECTRUM, the sampling parameter information is provided
in the SPECTRUM object, sinceit is describing the spectral variation between the rows of the
data. Anirregularly sasmpled SPECTRUM must be stored horizontally, with each specific
spectral range identified as a separate column.

A.24.1 Required Keywords

INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES

AW PRE

A.24.2 Optional Keywords

NAME
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL
ROW_PREFIX_BYTES
ROW_SUFFIX_BYTES
MINIMUM_SAMPLING_PARAMETER
MAXIMUM_SAMPLING _PARAMETER
. DERIVED_MINIMUM

10. DERIVED_MAXIMUM

11. DESCRIPTION

CoNoO~WDNE

A-88 Appendix A. PDS Data Object Definitions

A.24.3 Required Objects

1. COLUMN

A.24.4 Optional Objects

1. CONTAINER

A.245 Example

This exampleillustrates a SPECTRUM data object stored in avertical format. The data are
regularly sampled at intervals of 99.09618 meters/second and data samples are stored in
successive ROWS.

row <~——2 bytes ——
1 -258111.21 M/S
2 -254599.47 M/S
256

PDS_VERSI ON_I D PDS3

RECORD_TYPE FI XED_LENGTH

RECORD_BYTES 2

FI LE_RECORDS 256

PRODUCT_I D "RSSLOO7. DAT"

DATA SET_I D "I HW C- RSSL- 3- EDR- HALLEY- V1. 0"
TARGET_NAME "HALLEY"

| NSTRUVENT _HOST_NAME
| NSTRUVENT _NAVE
OBSERVATI ON_I D
START_TI MVE

STOP_TI ME
PRODUCT_CREATI ON_TI ME

"I HW RADI O STUDI ES NETWORK"
"RADI O SPECTRAL LI NE DATA"
"621270"

1985-11-10T00: 43: 12. 000Z
1985-11-10T00: 43: 12. 000Z

" UNK"

/* Record Pointer to Major Object */
ATOTAL_| NTENSI TY_SPECTRUM = "RSSL0O007. DAT"

/* Cbject Description */

OBJECT
| NTERCHANGE_FORIVAT

SPECTRUM
Bl NARY

Appendix A. PDS Data Object Definitions

RONG

ROW BYTES

COLUWNS

SAMVPLI NG_PARAVETER NANE

M NI MUM_SAMPLI NG_PARAVETER
SAVPLI NG_PARAVETER | NTERVAL
SAVPLI NG_PARAVETER_UNI T
DESCRI PTI ON

OBJECT
NANE
DATA TYPE
START_BYTE
BYTES
SCALI NG_FACTOR
OFFSET
DERI VED_M NI MUM
DERI VED_MAXI MUM
END_OBJECT
END_OBJECT

END

A-89

256

2

1

"VELO_COoM'

-1. 268431E+04

9. 909618E+01

" METERS/ SECOND"

"Radi o Studies; Spectral Line intensity
spectrum Spectrumis organized as 1
colum with 256 rows. Each row
contains a spectral value for the
velocity derived fromthe sanpling
parameter information associated with
each row. "

COLUWN
FLUX_DENSI TY
VBB_| NTEGER

1

2

7.251200E- 04
0. 000000E+01
2. 380000E+01
3. 490000E+01
COLUWN
SPECTRUM

A-90 Appendix A. PDS Data Object Definitions

A.25 SPICE KERNEL

The SPICE_KERNEL object describes asingle kernel filein a collection of SPICE kernels.
SPICE kernels provide ancillary data needed to support the planning and subsequent analysis of
space science observations. The SPICE system includes the software and documentation required
to read the SPICE Kernels and use the data contained therein to help plan observations or
interpret space science data. This software and associated documentation are collectively called
the NAIF Toolkit.

Kernel files are the major components of the SPICE system. Each type of kernel, indicated by the
KERNEL_TY PE keyword, corresponds to one of these components and has a specific
abbreviation. The major kernel types, their abbreviations, and the associated file extension(s) are
listed in the following table. (For a complete list of file extensions, see Section 10.2.3.)

KERNEL_TYPE Abbreviation File Contents
Extension
EPHEMERIS SPK .BSP —binary Spacecraft, planet, satellite, or other target

XSP —transfer body epehemeris data to provide position and
velocity of atarget as afunction of time

TARGET_CONSTANTS PCK .TPC Cartographic constants for a planet, satellite,
comet, or asteroid
INSTRUMENT IK Tl Collected science instrument information,

including dpecification of the mounting
alignment, internal timing, and other
information needed to interpret measurements
made with a particular instrument
POINTING CK .BC —binary Pointing data, e.g., theinertially referenced
XC —transfer attitude for a spacecraft structure upon which
instruments are mounted, given as afunction
of time

EVENTS EK XES Event information, e.g., spacecraft and
instrument commands, ground data system
event logs, and experimenter’ s notebook
comments

LEAPSECONDS LSK TLS An account of the leapseconds needed to
correlate civil time (UTC or GMT) to
ephemeris time (TDB), the measure of time
used in the SP kernel files
SPACECRAFT_CLOCK- SCLK .TSC Data needed to correlate a spacecraft clock to
_COEFFICIENTS ephemeristime

Data products referencing a particular SPICE kernel do so by including the
SOURCE_PRODUCT _ID keyword in their label with avalue corresponding to that of the
PRODUCT _ID keyword in the SPICE_KERNEL label. (The PRODUCT _ID keyword is unique
to adata product.)

Appendix A. PDS Data Object Definitions

A.25.1 Required Keywords

1. DESCRIPTION
2. INTERCHANGE_FORMAT
3. KERNEL_TYPE

A.25.2 Optional Keywords

Any

A.25.3 Required Objects

None

A.25.4 Optional Objects

None

A.255 Example

A-91

Following is an example of a SPICE CK (pointing) kernel label. This label would be attached to
the CK file, and thus would be immediately followed by the internal CK file header. (This
example was fabricated for use here based on existing examples.)

PDS_VERSI ON_I D
RECORD_TYPE

M SSI ON_NANE
SPACECRAFT_NAME

DATA _SET_ID

FI LE_NAME

PRODUCT | D
PRODUCT_CREATI ON_TI ME
PRODUCER | D

M SSI ON_PHASE_TYPE

PRODUCT _VERSI ON_TYPE
START_TT ME

STOP_TI ME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
TARGET _NAME

| NSTRUVENT _NANVE

| NSTRUVENT_| D
SOURCE_PRODUCT | D

PDS3

STREAM

MARS_OBSERVER
MARS_OBSERVER

" MO- M SPI CE- 6- CK- V1. 0"
" NAFO000D. TC"

" NAFO00O0D- CK"

1992- 04- 14T12: 00: 00

" NAI F"

" ORBI T"

" TEST"

1994- 01- 06 T00: 00: 00Z
1994- 02- 04T23: 55: 00Z
"3/ 76681108. 213"
"4/79373491. 118"

MARS

"MARS OBSERVER SPACECRAFT"
MO

{" NAFO000C. BSP", " NAF0000C. TLS", "NAF0000C. TSC'}

NOTE
SOFTWARE TESTI NG ONLY. "

"BASED ON EPHEMERI S | N NAFOOOOC. BSP.

FOR

A-92 Appendix A. PDS Data Object Definitions

OBJECT = SPI CE_KERNEL
| NTERCHANGE _FORMAT = ASCI
KERNEL_TYPE = PO NTI NG
DESCRI PTI ON = "This is a SPICE kernel file, designed

to be accessed using NAIF Tool kit software. Contact your flight
project representative or the NAIF node of the Planetary Data System
if you wish to obtain a copy of the NAIF Toolkit. The Tool kit
consi sts of portable FORTRAN 77 code and extensive user
docunent ation.”

END_OBJECT = SPI CE_KERNEL

END

Appendix A. PDS Data Object Definitions A-93

A.26 TABLE

TABLEs are anatural storage format for collections of datafrom many instruments. They are
often the most effective way of storing much of the meta-data used to identify and describe
instrument observations.

The TABLE object isauniform collection of rows containing ASCII or binary values stored in
columns. The INTERCHANGE_FORMAT keyword is used to distinguish between TABLES
containing only ASCII columns and those containing binary data. The rows and columns of the
TABLE object provide anatural correspondence to the records and fields often defined in
interface specifications for existing data products. Each field is defined as a fixed-width

COLUMN object; the value of the COLUMNS keyword is the total number of COLUMN objects
defined in the label. All TABLE objects must have fixed-width records.

Many variations on the basic TABLE object are possible with the addition of optional keywords
and/or objects. While it is possible to create very complex row structures, these are often not the
best choices for archival data products. Recommended ASCII and binary table formats are
described and illustrated below.

A.26.1 Keywords
A.26.1.1 Required Keywords

INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES

E N

A.26.1.2 Optional Keywords

NAME

DESCRIPTION
ROW_PREFIX_BYTES
ROW_SUFFIX_BYTES
TABLE_STORAGE_TYPE

agrwWwbdPE

A.26.1.3 Required Objects

1. COLUMN

A-94 Appendix A. PDS Data Object Definitions

A.26.1.4 Optional Objects

1. CONTAINER

A.26.2 ASCII vs. BINARY formats

ASCII tables provide the most portable format for access across awide variety of computer
platforms. They are also easily imported into a number of database management systems and
Spreadsheet applications. For these reasons, the PDS recommends the use of ASCI| table formats
whenever possible for archive products.

ASCII formats are generally less efficient for storing large quantities of numeric data. In addition,
raw or minimally processed data products and many pre-existing data products undergoing
restoration are only available in binary formats.Where conversion to an ASCII format is not cost
effective or is otherwise undesirable, BINARY table formats may be used.

A.26.3 Recommended ASCII TABLE Format

The recommended format for ASCIl TABLE filesis a commarseparated value format in which
the string fields are enclosed in double quotes. ASCI|I tables must have fixed-length records and
should use carriage-return/linefeed (<CR><LF>) delimiters. Numeric fields are right-justified in
the allotted space and character fields are |eft-justified and blank padded on the right. This table
format can be imported directly into many commercia data management systems.

The field delimiters and quotation marks must occur between the defined COLUMNS. That is,
the START_BY TE for a string column should not point to the opening quotation mark, but the
first character in thefield itself. Similarly, the BY TES values for the columns should not include
the commas at the end of the values. For example, atwelve character COLUMN called

SPACECRAFT_NAME would be represented in the table as " VOYAGER 1 " rather than™
VOYAGER 1" or "VOYAGER 1".

The following label fragment illustrates the general characteristics of the recommended ASCI|
TABLE format for atable with 1000-byte records:

RECORD TYPE = FI XED_LENGTH < 1000 » Record
RECORD BYTES = 1000 Row 1 CR|LF 1
Py Row?2 |CR|LF 2
OBJECT = TABLE -)

| NTERCHANGE,_ FORMAT = ASCl |

ROW BYTES = 1000
END OBJECT = TABLE Rown ICRILF N

Appendix A. PDS Data Object Definitions A-95

A.26.3.1 Example- Recommended ASCII TABLE

The following exampleis an ASCII index table with 71-byte records. Note that for ASCII tables,
the delimiters (double quotes and commas) and line terminators (KCR><LF>) are included in the
byte count for each record (RECORD_BY TES). In this example, the delimiters are also included
in the byte count for each row (ROW_BY TES). The <CR><LF> characters have been placed in
columns 70 and 71.

Note: The examplefollowingisan INDEX_TABLE, a specific type of (ASCII)
TABLE object. Two rows of numbers indicating the byte count (read
vertically) have been added above the data file contents to facilitate
comparison with the label. These rows would not appear in the actual datafile.

Contents of file“INDEX.TAB”:

000000000111111111122222222223333333333444444444455555555556666666666 7 7

123456789012345678901234567890123456789012345678901234567890123456789 0 1

"F-MDR ","F-M DR 40N286;1 ","C", 42, 37,289, 282, "F4A0N286/ FRAME. LBL " <CR><LF>
"F-MDR ","F-M DR 20N280;1 ","C", 22, 17,283,277, "F20N280/ FRAME. LBL " <CR><LF>
"F-MDR ","F-M DR 20N286;1 ","C", 22, 17,289, 283, "F20N286/ FRAME. LBL " <CR><LF>
"F-MDR ","F-M DR O0ON279;1 ","R", 2, -2,281, 275, "FOON279/ FRAME. LBL " <CR><LF>
"F-MDR ","F-M DR 05N290;1 ","C", 7, 2,292,286, "FO05N290/ FRAME. LBL " <CR><LF>
"F-MDR ","F-M DR 05S279;1 ","R", -2, -7,281, 275, "F05S279/ FRAME. LBL " <CR><LF>
"F-MDR ","F-M DR 10S284;1 ","C", -7,-12, 287,281, "F10S284/ FRAME. LBL " <CR><LF>
"F-MDR ","F-MDR 10S290;1 ","R", -7,-12,292, 286, "F10S290/ FRAME. LBL " <CR><LF>
"F-MDR ","F-M DR 15S8283;1 ","R", -12, -17, 286, 279, "F155S283/ FRAME. LBL " <CR><LF>
"F-MDR ","F-M DR 15S8289;1 ","R", -12, -17, 291, 285, "F155S289/ FRAME. LBL " <CR><LF>

Contents of file“INDEX.LBL":

PDS_VERSI ON_I D = PDS3
RECORD_TYPE = FI XED_LENGTH
RECORD_BYTES =71

FI LE_RECORDS = 10

1 NDEX_TABLE = "| NDEX. TAB"

PRODUCT_CREATI ON_TI ME

M SSI ON_PHASE_NAME PRI MARY_M SSI ON

NOTE "This table lists all MDRs on this
volune. It also includes the latitude and | ongitude range for each
M DR and the directory in which it is found.™

1999-02- 23t 11: 15: 07

DATA SET I D = " MG\ V- RDRS- 5- M DR- FULL- RES- V1. 0"
VOLUME_I D = MG 7777

PRODUCT | D = "FM DR XYZ"

SPACECRAFT_NANME = MAGELLAN

| NSTRUVENT _NAVE = "RADAR SYSTEM

TARGET _NAVE = VENUS

OBJECT = | NDEX_TABLE

A-96

| NTERCHANGE_FORVAT

ROAB
COLUMNS
ROW BYTES

| NDEX_TYPE

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
UNI T
START_BYTE
BYTES

END_OBJECT

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
UNIT
START_BYTE
BYTES

Appendix A. PDS Data Object Definitions

ASCl |
10

8

71

SI NGLE

COLUWN

PRODUCT_TYPE

"Magel | an DVAT type code. Possible
val ues are -M DR, Cl1-M DR, C2-M DR,
C3-M DR, and P-M DR "

CHARACTER

2

7

COLUWN

COLUWN

PRODUCT_I D

"Magel | an DVAT nane of product.
Exampl e: F-M DR 20N334; 1"

CHARACTER

12

16

COLUWN

COLUWN

SEAM CORRECTI ON_TYPE

"A value of Cindicates that cross-
track seam correction has been applied.
A val ue of R indicates that the
correction has not been applied."”
CHARACTER

31

1

COLUWN

COLUWN

MAXI MUM_LATI TUDE

"Northernnost franme |atitude rounded to
t he nearest degree.”

| NTEGER

DEGREE

34

3

COLUWN

COLUWN

M NI MUM_LATI TUDE

"Sout hernnost franme |atitude rounded to
t he nearest degree."

| NTEGER

DEGREE

38

3

Appendix A. PDS Data Object Definitions

END_OBJECT

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
UNI T
START_BYTE
BYTES

END_OBJECT

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
UNIT
START_BYTE
BYTES

END_OBJECT

OBJECT
NAVE
DESCRI PTI ON

DATA TYPE
START_BYTE
BYTES

END_OBJECT

END_OBJECT
END

A-97

COLUWN

COLUWN

EASTERNMOST _LONG TUDE

"Easternnmost frame |ongitude rounded to
t he nearest degree."

| NTEGER

DEGREE

42

3

COLUWN

COLUWN

VWESTERNMOST _LONG TUDE

"West ernnost frame | ongitude rounded to
t he nearest degree."

| NTEGER

DEGREE

46

3

COLUWN

COLUWN

FI LE_SPECI FI CATI ON_NAMVE

"Path and file name of frane table
relative to CO-ROMroot directory."
CHARACTER

51

18

COLUWN

I NDEX_TABLE

A.26.4 Recommended BINARY TABLE Format

In the case of binary data, PDS recommends a format in which one data record corresponds to
onerow inthe TABLE. Unused or spare bytes embedded within the record should be defined as
COLUMNSs (one for each chunk of contiguous unused bytes) named “ SPARE”, both for
completeness and to facilitate automated validation of the TABLE structure. For reasons of
portability, BIT_COLUMN objects within COLUMNSs are discouraged. Whenever possible, bit
fields should be unpacked into more portable, byte-oriented COLUMNS.

A-98 Appendix A. PDS Data Object Definitions

The following label fragment illustrates the general characteristics of the recommended binary

TABLE format for atable with 1000-byte records:

RECORD_TYPE = FI XED_LENGTH
RECORD_BYTES = 1000
OBJECT = TABLE

| NTERCHANGE_FORVAT = Bl NARY

ROW BYTES = 1000
END_OBJECT = TABLE

A.264.1 Example- Recommended Binary TABLE

<—1000— Record

Row 1 1
Row 2 2
Row n n

Following is an example of abinary table containing three columns of data. The first two
columns provide TIME information in both the PDS standard UTC format and an aternate
format. The third column provides uncalibrated instrument measurements for the given time.
The binary datareside in the file “T890825.DAT”. The detached label file, “T890825.LBL”

providing the complete description, is presented below.

Note: The label makes use of aformat file, pointed to by the "STRUCTURE
keyword in the TABLE definition, to include a set of column definitions held
in an external file (“CRSDATA.FMT”). The contents of this structure file are

also provided below.

This table could also be represented as a TIME_SERIES by the addition of
sampling parameter keywords to describe the row-to-row variation in the

table.

Contents of label file “T890825.DAT":

byte 1 89 3233 36 Record

Row 1

1

C TIME PDS TIME D1
RATE

Row 350

350

Appendix A. PDS Data Object Definitions A-99

Contents of label file “T890825.LBL":

PDS3

PDS_VERSI ON_| D

/* File Characteristic Keywords */

RECORD_TYPE FI XED_LENGTH
RECORD BYTES 36
FI LE_RECORDS 350

HARDWARE_MODEL_| D
OPERATI NG_SYSTEM | D

"SUN SPARC STATI ON'
"SUN CS 4.1.1"

/* Data Object Pointers */

A"TABLE "T890825. DAT"

/* ldentification Keywords */

DATA SET_ID "VG&2- N- CRS- 4- SUVWM D1- 96SEC- V1. 0"

SPACECRAFT _NAME = "VOYAGER 2"
I NSTRUVENT _NAME = "COSM C RAY SYSTEM'
TARGET _NANME = NEPTUNE
START _TI ME = 1989- 08- 25T00: 00: 00. 000z
STOP_TI ME = 1989-08- 25T09: 58: 02. 000Z
M SSI ON_PHASE NANE = "NEPTUNE ENCOUNTER"
PRODUCT _I D = "T890825. DAT"
PRODUCT _CREATI ON_TI ME = " UNK"
SPACECRAFT_CLOCK_START_COUNT = " UNK"
SPACECRAFT _CLOCK STOP_COUNT = "UNK"
/* Data Object Descriptions */
OBJECT = TABLE

| NTERCHANGE _FORMAT = Bl NARY

ROWG = 350

COLUWMNS =3

ROW BYTES = 36

NSTRUCTURE = " CRSDATA. FMr"
END_OBJECT = TABLE
END

Contents of file“CRSDATA.FMT":

OBJECT = COLUWN

NANMVE ="C TI ME"

UNI T = " SECOND"

DATA TYPE = REAL

START_BYTE =1

BYTES =8

M SSI NG = 1. 0E+32

DESCRI PTI ON = "Time colum. This field contains tine

in seconds after Jan 01, 1966 but is
di spl ayed in the default tine format
sel ected by the user."

END_OBJECT = COLUWN

A-100 Appendix A. PDS Data Object Definitions

OBJECT = COLUWN
NANVE = "PDS TI ME"
UNIT = "TI ME"
DATA TYPE = TIME
START_BYTE =9
BYTES =24
DESCRI PTI ON = "Date/Time string of the formyyyy-mm

ddThh: mm ss. sss such that the representation of the date Jan 01
2000 00: 00: 00. 000 woul d be 2000-01-01TO0O0: 00: 00. 000Z (Z i ndicates
Uni versal Tinme)."

END_OBJECT = COLUWN
OBJECT = COLUWN
NAVE = "Dl RATE"
UNI' T = " COUNT"
DATA TYPE = "REAL"
START_BYTE = 33
BYTES =14
M SSI NG = 1. 0E+32
DESCRI PTI ON = "The D1 rate is approxi mtely

porportional to the omidirectional flux of electrons with kinetic
energy > ~1MeV. To obtain greater accuracy, the Dl calibration
tabl es (see catal og) should be applied."

END_OBJECT = COLUWN

A.26.5 TABLE Variations

This section addresses a number of variations on the basic TABLE object that arise when
TABLES appear in data files with other objects, or where file attributes may differ from the one
row-one record approach recommended above. The variations discussed below are equally
applicable to the other TABLE-type objects, SERIES and SPECTRUM.

This section is not intended to be a complete reference for TABLE variations. Within the
following examples, some illustrate a recommended data modelling approach, some illustrate
alternate approaches, and other examples are included solely to document their existence.

A.265.1 Record blockingin Fixed Length TABLES

In the PDS recommended TABLE format, ROW_BYTES = RECORD_BY TES, but thisis not
always achievable. TABLEs are sometimes packaged with other objects in the samefile, or
binary data may be blocked into larger records, both resulting in cases where the TABLE row
size will not match the file record width.

Rows in either ASCII or binary tables may be either larger or smaller than the physical record
size specified by the RECORD_BY TES keyword. Regardless of the relationship between row
size and record size, the RECORD_BY TES keyword must always reflect the actual physical
record size, while ROW_BY TES must always be the logical size of one row of the TABLE
object.

Appendix A. PDS Data Object Definitions A-101

A.26511 Example: Binary Tablewith ROW_BYTES> RECORD_BYTES

The following label fragment illustrates a case in which the record size of thefileis smaller than
the row size of the TABLE. Note that the table rows may straddle record boundaries. Each
object, however, must begin on arecord boundary, so it is possible that some padding may be
required between the end of the TABLE object and the beginning of the IMAGE object,
depending on the number of rowsin the TABLE:

RECORD TYPE = FI XED_LENGTH <—— 800 —>» Record

RECORD BYTES = 800 1

ATABLE =("1 MAGE. | MG', 1) Row1

A MAGE =("I MAGE. | MG', 7) | 2
of |- - =

OBJECT = TABLE = __Row2 | 3
| NTERCHANGE_FORMAT = Bl NARY — :
ROW BYTES = 1200 7

END_OBJECT = TABLE IMAGE

OBJECT = | MAGE
SAVPLES = 800
SAVPLE_BI TS =8

END_OBJECT = | MAGE

A265.12 Example: ASCI| Tablewith ROW_BYTES < RECORD_BYTES

The label fragment below illustrates a case in which the row size of the TABLE is smaller than
the record size of thefile. It isnot required that the file record size be an integral multiple of the
table row size; asillustrated above, table rows may straddle record boundaries. Also as above, it
is possible that some padding will be required to ensure that the subsequent SERIES object
begins on arecord boundary.

RECORD TYPE = FI XED_LENGTH

RECORD BYTES = 800

ATABLE = ("EXAMPLE. TAB", 1)

ASERI ES = ("EXAMPLE. TAB", 1214)

OBJECT = TABLE Row1 |CFﬂ LFI_Rowz LCR | LF
| NTERCHANGE _FORMAT = ASCI | - = =l =L e
ROW BYTES = 400

END OBJECT = TABLE

OBJECT - SERIES TABLE

SERIES

A-102 Appendix A. PDS Data Object Definitions

| NTERCHANGE_FORMAT = ASCl |
ROW BYTES = 800
ENiI)._.(.BJ ECT = SERI ES
A.26.5.1.3 Example: Binary Table with ROW_BYTES < RECORD_BYTES

It is often the case that a data object such asa TABLE is preceeded by a header containing
observational parameters or, as frequently happens with TABLES, a set of column headings. The
label below illustrates a case in which aHEADER object containing a single 500-byte row
preceeds a TABLE having 1032-byte records. Thefileis physically blocked into records of
32,500 bytes. Note that in this case the HEADER record is not padded out to the full block size.
Instead, a byte offset (rather than arecord offset) is used to indicate the start of the TABLE
object. (This example aso includes COLUMN definitions contained in an external format file, a
fragment of the contents of which is also shown below, following the label.)

32492
byte 1 501 \ Record
HEADER | Row1 | .. J Row31 | R 1
Row 32 2
TABLE
Row 1425N 46
- 32500 -
PDS_VERSI ON_I D = PDS3
/* FI LE CHARACTERI STI CS */
RECORD _TYPE = FI XED_LENGTH
RECCORD BYTES = 32500
FI LE_RECORDS = 46
NHEADER = ("ADF01141. 3", 1)
NTABLE = ("ADF01141. 3", 501<BYTES>)

/* | DENTI FI CATI ON KEYWORDS */

| NSTRUVENT _NANVE
M SSI ON_PHASE_NANE

"RADAR SYSTEM'
PRI MARY_M SSI ON

DATA SET_ID = " MG\ V- RDRS- 5- CDR- ALT/ RAD- V1. 0"
PRCODUCT_I D = "ADF01141. 3"

TARGET_NAME = VENUS

SPACECRAFT_NAME = MAGELLAN

Appendix A. PDS Data Object Definitions A-103

PRCDUCT_CREATI ON_TI ME 1991-07-23T06: 16: 02. 000Z

ORBI T_NUVBER = 1141

START_TI ME = UNK

STOP_TI ME = UNK

SPACECRAFT_CLOCK_START_COUNT = UNK

SPACECRAFT_CLOCK_STOP_COUNT = UNK

HARDWARE _VERSI ON_| D = 01

SOFTWARE_VERSI ON_| D = 02

UPLOAD | D = MD356N

NAVI GATI ON_SOLUTION I D ="ID = M361-12 "

DESCRI PTI ON = "This file contains binary records

describing, in time order, each altimeter footprint measured
during an orbit of the Magellan radar mapper."

/* DATA OBJECT DEFI NI TI ON DESCRI PTI ONS */

OBJECT = HEADER
HEADER TYPE = SFDU
BYTES = 500

END_OBJECT = HEADER

OBJECT = TABLE

| NTERCHANGE _FORMAT = BI NARY

RONG = 1425

COLUMNS = 40

ROW BYTES = 1032

ANSTRUCTURE = " ADFTBL. FMT"

END_OBJECT = TABLE

END

Contents of format file"ADFTBL.FMT":

OBJECT = COLUWN

NANVE = SFDU_LABEL_AND LENGTH

START_BYTE =1

DATA TYPE = CHARACTER

BYTES = 20

UNI T = "NA"

DESCRI PTI ON = "The SFDU | abel _and_| ength el erment
identifies the |abel and length of the Standard Format Data Unit
(SFDY) . "

END_OBJECT = COLUWN

OBJECT = COLUWN

NAVE = FOOTPRI NT_NUVBER

START_BYTE =21

DATA TYPE = LSB | NTEGER

BYTES =4

UNI' T = "NA"

DESCRI PTI ON = "The footprint_nunmber el ement provides a

signed integer value. The altinetry and radi ometry processing
program assigns footprint O to that observed at nadir at periapsis.
The remaining footprints are |located al ong the spacecraft nadir
track, with a separation that depends on the Doppl er resol ution of

A-104

A.26514

Appendix A. PDS Data Object Definitions

the altinmeter at the epoch at which that footprint is observed. Pre-

periapsis footprints will be assigned negative nunbers, post-
periapsis footprints will be assigned positive ones. A |oss of
several consecutive burst records fromthe ALT-EDR will result in
m ssing footprint nunbers."
END_OBJECT = COLUWN
OBJECT = COLUWN
NANE = DERI VED_THRESH DETECTOR | NDEX
START_BYTE = 1001
DATA_TYPE = LSB_UNSI GNED_| NTEGER
BYTES =4
UNI'T = "NA"
DESCRI PTI ON = "The derived thresh _detector _index

el ement provides the value of the elenment in
range_sharp_echo_profile that satisfies the altineter threshold
detection algorithm representing the distance to the nearest object
in this radar footprint in units of 33.2 meters, nodulus a 10.02
kilometer altinmeter range anmbiguity."

END_OBJECT = COLUWN

Example: PDS Recommended Method for Dealing with Odd-Sized Headers

The preceding format may be difficult to deal with in some cases because of the odd-sized header
preceeding the TABLE object. The recommended approach to this situation is pad the HEADER
object out to an integral multiple of the TABLE row size, and then let RECORD_BYTES =
ROW_BY TES. Modifying the above case accordingly would yield the following:

<+— 1032 — Record

HEADER RN\ 1
_Row1 2
| Row2 3
TABLE
Row 1425 1426

RECORD_TYPE = FI XED_LENGTH
RECORD BYTES = 1032

FI LE_RECORDS = 1426

AHEADER = ("ADF01141.3", 1)
ATABLE = ("ADF01141. 3", 2)

Appendix A. PDS Data Object Definitions A-105

/* DATA OBJECT DEFI NI TI ONS */

OBJECT = HEADER
HEADER TYPE = SFDU
BYTES = 500
END_OBJECT
OBJECT = TABLE
| NTERCHANGE _FORNAT = Bl NARY
ROWS = 1425
COLUWNS = 40
ROW BYTES = 1032
ASTRUCTURE = " ADFTBL. FMI™
END OBJECT
END
A.26.5.1.5 Alternate Format — Rows on Record Boundaries

The following label fragment and illustration provide a second aternate data organization for the
preceding example. In this example, arecord size of 30,960 is used to hold 30 rows of the
TABLE. Again the 500-byte HEADER uses only a portion of the first record.

Fio;1471 r-- -_TAF:OEMI%N 49

RECORD_TYPE

= FI XED_LENGTH
RECORD BYTES = 30960
FI LE_RECORDS = 49
AHEADER = ("ADF01141.3",1)
ATABLE = ("ADF01141.3")

/* DATA OBJECT DEFI NI TI ONS */

A-106 Appendix A. PDS Data Object Definitions

OBJECT = HEADER
HEADER TYPE = SFDU
BYTES = 500
END_OBJECT = HEADER
OBJECT = TABLE
| NTERCHANGE FORNVAT = BI NARY
ROAS = 1425
COLUMNS = 40
ROW BYTES = 1032
ASTRUCTURE = " ADFTBL. FMI"
END OBJECT = TABLE

A.265.2 Multiple TABLEsin aSingle Data File

A single data product file may contain several ASCII or binary TABLES, each with a different
logical row size. There are several possible approaches to formatting such a product file,
depending on whether the product contains binary or ASCII data. When al the TABLESs in the
datafile are ASCII tables there are two formatting options: fixed-length file records or stream
records. When binary data are involved, even if only in asingle TABLE, fixed-length file records
are mandatory.

A.265.2.1 Example: Multiple ASCI | tables— Fixed-Length Records

In the case of a series of ASCII TABLE objects with varying ROW_BY TES values, a fixed-
length record file may be generated by padding all rows of all TABLES out to the length of the
longest rows by adding blank characters between the end of the last COLUMN and the
<CR><LF> record delimiters.

When this approach isused, RECORD_TYPE isFIXED_LENGTH and RECORD_BYTES =

ROW_BYTES.
< 800 =>»<—200—>
I | |
RECORD_TYPE = FI XED_LENGTH | L
RECORD_BYTES = 1000 L
= A_TABLE!Spare: S,
OBJECT = A _TABLE | Tl
| NTERCHANGE_FORMAT = ASCI | | L
ROW BYTES = 1000 | |
END_OBJECT = A TABLE : :
I |
OBJECT = B_TABLE !y
| NTERCHANGE_ FORMAT = ASCI | B_TABLE Gl
ROW BYTES = 1000 : :
END_OBJECT = B_TABLE i

<«——— 1000 ——>»

Note that each TABLE object has the same value of ROW_BY TES, even though in the smaller
table the rightmost bytes will be ignored. Alternately, the filler bytes may be documented as
ROW_SUFFIX_BYTES. Say, for example, that in the above case B_ TABLE only required 780

Appendix A. PDS Data Object Definitions A-107

bytes for its rows. The following definition for B_TABLE marks the last 220 bytes of each row
as suffix bytes:

OBJECT = B_TABLE
| NTERCHANGE _FORVAT = ASCl |
ROW BYTES = 780
ROW SUFFI X_BYTES = 220
A.26.5.2.2 END_OBJECT =B _TABLE
A.26.5.2.2 Example: Multiple ASCI | tables — Stream Records

Sometimes padding TABLE records out to a common fixed length creates more problems than it
solves. When thisis true each TABLE should retain its own ROW_BY TES value, without
padding, and the file RECORD_TYPE is set to STREAM. RECORD_BY TES should be
omitted. The following label fragment illustrates this situation.

<« 802 —>»

RECORD TYPE = STREAM : :
bl
OBJECT = A TABLE A TABLE| S5
| NTERCHANGE_FORNVAT = ASCI | Lo
ROW BYTES = 802 Lo
o —
END_OBJECT = A TABLE L
_ I |
OBJECT = B_TABLE o
| NTERCHANGE_FORMAT = ASC | B_TABLE 1G | 5
ROW BYTES = 1000 Lo
C. I
END_OBJECT = B_TABLE :
<1000 ——™™™>
A.26.5.2.3 Example: Multiple Binary Tables — Fixed-Length Records
When binary data are involved the file records must be fixed-length. <«——800 —> =200 —

The records of the smaller TABLE(s) are padded, usually with null i
characters, out to the maximum ROW_BY TES vauein thefile. The :
padding bytes are accounted for in the TABLE definition using one of A_TABLE ! Spare
two methods: either by defining a COLUMN called “ SPARE” to '
define the number and location of these spare bytes, or by using the :
ROW_SUFFIX_BY TES keyword, asin the case of multiple ASCII
tables. In the following example, thefirst table, A_TABLE, hasa
logical row length of 800 bytes. Each row has been padded out to
1000 bytes, the length of the B_TABLE rows, with a 200-byte SPARE
column:

B_TABLE

< 1000 —™

A-108 Appendix A. PDS Data Object Definitions
RECORD TYPE = FI XED_LENGTH
RECORD BYTES = 1000
OBJECT = A TABLE

| NTERCHANGE_FORVAT = Bl NARY
ROW BYTES = 1000
OBJECT = COLUWN
NANVE = "TI ME TAG'
DATA TYPE = TIME
START_BYTE =1
BYTES = 23
END OBJECT = COLUWN
OBJECT = COLUWN
NANVE = " SPARE"
DATA TYPE = "NA"
START_BYTE = 801
BYTES = 200
END OBJECT = COLUWN
END OBJECT = A TABLE
OBJECT = B _TABLE
| NTERCHANGE_FORVAT = Bl NARY
ROW BYTES = 1000
END OBJECT = B _TABLE
A.26.53 ROW_PREFIX or ROW_SUFFIX Use

ROW_PREFIX_BYTES and ROW_SUFFIX_BYTES are provided for dealing with two
situations:

1. WhenaTABLE object is stored in parallel with another data object, frequently an
IMAGE. In this case, each physical record of the file contains a TABLE row as one part
of the record and an IMAGE line as the other part.

2. When a TABLE has had each of its rows padded out to afixed length larger than the
logical row size of the table.

Each method isillustrated below.

A.26.5.3.1 Example: Parallel TABLE and IMAGE objects

The following label fragment illustrates a file with fixed-length records, each of which contains
one row of a TABLE data object and one line of an IMAGE object. Thisis acommon format for
providing ancillary information applicable to each IMAGE line. In the TABLE object the bytes

Appendix A. PDS Data Object Definitions A-109

belonging to the IMAGE are accounted for as ROW_SUFFIX_BYTES. In the IMAGE object the
bytes belonging to the TABLE row are accounted for

asLINE PREFIX BYTES.

RECORD_TYPE = FI XED _LENGTH Row 1 Line 1 1
RECORD_BYTES = 1000
OBJECT = TABLE IMAGE

| NTERCHANGE_FORMAT = Bl NARY

ROW BYTES = 200 PREEIX

ROW SUFFI X_BYTES = 800 IMAGE
END_OBJECT = TABLE TABLE
OBJECT = | MAGE

LI NE_SAMPLES = 800

SAVPLE_BI TS -8

LI NE_PREFI X_BYTES = 200 :

Row 800 | Line 800 800

END_OBJECT | MAGE 1000 :

Note that in each object the total size of the logical record plus al prefix and suffix bytesis equal
tothefilerecord size. That is:

RECORD BYTES=ROW _BYTES+ ROW_PREFIX BYTES+ ROW_SUFFIX BYTES
and

RECORD_BYTES= (LINE_SAMPLES* SAMPLE_BITS/ 8) + ROW_PREFIX_BYTES +
ROW_SUFFIX_BYTES

A.2654 CONTAINER Object use

Complex TABLEs may contain a set of columns of different data types which repeat a number of
timesin the row. In this case a CONTAINER object, which groups a set of inhomogeneous
COLUMN objects, may be used to provide a single definition for the repeating group. Section
A.8 contains an example of a TABLE object which makes use of a CONTAINER object.

A.26.5.5 Guidedlinesfor SPARE fields

Some TABLE objects contain spare bytes embedded in the record but not included in any
COLUMN object definition. They may be there for spacing or alignment purposes, or they may
have been reserved in the original data record for future use. Regardless of their origin, PDS
recommends that all such spare bytes be documented as COLUMNSs in the TABLE definition in
the interests of documentation and validation. Spare bytes may be included in both binary and
ASCII table objects. Guidelines for dealing with spare bytesin both cases follow.

A-110 Appendix A. PDS Data Object Definitions

A.2656 SPARE fields- Binary Tables

The following guidelines apply to spare byte fields in binary table objects:

» Embedded spare fields must be explicitly defined in COLUMN objects, except when the
gpare field appears at the beginning or end of arow where ROW_PREFIX _BYTES or
ROW_SUFFIX_BYTES s used.

e Spare COLUMNs must have DATA_TYPE = “N/A”.
* Multiple spare COLUMNSs may all specify NAME =*“SPARE”.
» Spare bytes may occur as prefix or suffix bytesin the rows.

» Prefix or suffix spares may be identified either with a spare COLUMN object or by use of
ROW_PREFIX_BYTES or ROW_SUFFIX_BYTES

The following examplesiillustrate the various situations.

A.26.5.6.1 Example: SPARE field embedded in a Binary TABLE

In the following label fragment, a spare column defines a series of bytes reserved for future use in
the middle of the data record:

RECORD_TYPE = FI XED_LENGTH
RECORD_BYTES = 1000 Column1. .. | 99
|
| |
OBJECT = TABLE TABLI E
| NTERCHANGE_FORMAT = Bl NARY oo
ROW BYTES = 1000 o |
COLUWNS = 99 | S |
1o |
| |
OBJECT = COLUWN P
NAME = SPARE [|
COLUWN_NUMBER = 87 oo
START_BYTE = 793 ~—800— 20
BYTES =21 <+—— 1000 —
DATA_TYPE = "N A"
DESCRI PTI ON = "Reserved for future user by Mssion Ops."
END_OBJECT = COLUWN
OBJECT = COLUWN

END_OBJECT = TABLE

Appendix A. PDS Data Object Definitions A-111

A.26.5.6.2 Example: Sparesat end of a Binary TABLE — Explicit 'SPARE' Column

In this label fragment, spare bytes have been included on the end of each record of the table.
These bytes are described as an additional COLUMN at the end of the record.

RECORD _TYPE = FI XED_LENGTH
RECORD BYTES = 1000
Column1i1 «-«- 99
OBJECT = TABLE |
| NTERCHANGE_FORMAT = BI NARY I
ROW BYTES = 1000
COLUWNS = 99 |
TABLE |
wl
OBJECT = COLUWN | o
COLUWN_NUMBER =1 | E
NAME = "TI ME TAG'
| D
END_OBJECT |
I
OBJECT = COLUWN |
COLUWN_NUMBER = 99
NAVE = SPARE 20
BYTES = 20 <4+—1000—p
DATA_TYPE = "NA"
START_BYTE = 981
END_OBJECT = COLUWN
END_OBJECT = TABLE
A.26.5.6.3 Example: Sparesat end of a Binary TABLE - ROW_SUFFIX_BYTES use

This fragment illustrates the same physical file layout as the previous example, but in this case
the spare bytes are defined using the ROW_SUFFIX_BY TES keyword, rather than defining an
additional spare COLUMN.

Columni ««- 98

|

|
RECORD_TYPE = FI XED_LENGTH I %
RECORD BYTES = 1000 TABLE &
R 1D
| U)|
OBJECT = TABLE =
| NTERCHANGE_FORMAT = BI NARY | 8

ROW BYTES = 980 |

|
20

<4+—1000—»

A-112 Appendix A. PDS Data Object Definitions

ROW SUFFI X_BYTES = 20
COLUWNS = 98
END_OBJECT = TABLE

A.26.5.7 SPARE fields- ASCII Tableswith Fixed Length Records

In ASCII tables, field delimiters (") and (,) and the <CR><LF> pair are considered part of the
data, even though the COLUMN objects attributes do not include them. Spare bytesin ASCI|
tables may contain only the blank character (ASCII decimal code 32). The following guidelines
apply to spare byte fieldsin ASCI|I table objects:

» Embedded spares are not allowed.

» Sparesare allowed at the end of each row of data.

* The <CR><LF> follows the spare data.

* Thereare no delimiters (commas or quotes) surrounding the spares.

» Spares at the end of the data can be ignored (like field delimiters and <CR><LF>) or they
can be identified

(1) inthe Table DESCRIPTION; or

(2) by using ROW_SUFFIX_BYTES (note that these bytes should not be included in the
value of ROW_BYTES)

A.26.5.7.1 Example - SPARE field at end of ASCII TABLE - Table description note
RECORD _TYPE = FI XED_LENGTH I 1000 I
RECORD_BYTES = 1000 |
- [
OBJECT = TABLE |
| NTERCHANGE_FORMAT = ASC! | |
ROW BYTES = 1000 |
o TABLE Spare (5|4
DECRI PTI ON ="This tabl e contains 980 |
bytes of table data foll owed by 18 bytes of [
bl ank spares. Bytes 999 and 1000 contain the I
<CR><LF> pair." |

4+—— 9B80—p <418 P

Appendix A. PDS Data Object Definitions A-113
A.26.5.7.2 Example - Sparesat end of a ASCII TABLE - ROW_SUFFIX use
<4—980—» «—20—»
[
RECORD_TYPE = FI XED_LENGTH |
RECORD_BYTES = 1000 I
I
OBJECT = TABLE |
| NTERCHANGE_FORVAT f ASCl | TABLE |Spare 55
ROW BYTES = 980
ROW SUFFI X_BYTES = 20 |
- |
DECRI PTI ON ="This table contains |
980 bytes of table data followed by 20
byt es of spare data of which the |ast |

two bytes, bytes 999 and 1000, contain
the <CR><LF> pair."
END_OBJECT = TABLE

——

ROW_SUFFIX

A.265.8 SPARE fields- ASCI| Tableswith STREAM Records

Spare fields are not used with ASCII Tablesin STREAM record formats. In STREAM files, the
last data field explicitly defined with a COLUMN object is followed immediately by the
<CR><LF> pair. Since there is no use for spares at the end of the data, and embedded spares are

not allowed in ASCII tables, spares are not applicable here.

A-114 Appendix A. PDS Data Object Definitions

A.27 TEXT

The TEXT object describes afile which contains plain text. It is most often used in an attached
label, so that the text beginsimmediately after the END statement of the label. PDS recommends
that TEXT objects contain no specia formatting characters, with the exception of the carriage
return/line feed sequence and the page break. Tab characters are discouraged, since they are
interpreted differently by different programs.

Use of the carriage-return/line-feed sequence (KCR><LF>) isrequired for cross-platform
support. PDS further recommends that text lines be limited to 80 characters, with delimiters, to
facilitate visual inspection and printing of text files.

NOTE: The TEXT object is most often used for files describing the contents of an archive
volume or the contents of a directory, such as AAREADME.TXT, DOCINFO.TXT,
VOLINFO.TXT, SOFTINFO.TXT, etc. Thesefilesmust bein plain, unmarked ASCII text and
always have afile extension of “.TXT”. Documentation files that arein plain ASCII text, on the
other hand, must be described using the DOCUMENT object. (See the definition of the
DOCUMENT Object in Section A.12.)

The required NOTE field should provide a brief introduction to the TEXT.

A.27.1 Required Keywords

1. NOTE
2. PUBLICATION_DATE

A.27.2 Optional Keywords

1. INTERCHANGE_FORMAT

A.27.3 Required Objects

None

A.27.4 Optional Objects

None

Appendix A. PDS Data Object Definitions A-115

A.275 Example

The example below is a portion of an AAREADME.TXT file.

PDS VERSI ON | D = PDS3
RECORD _TYPE = STREAM
OBJECT = TEXT
PUBLI CATI ON_DATE = 1991- 05-28
NOTE = "Introduction to this CD-ROM vol une. "
END OBJECT = TEXT
END

GEOLOG C REMOTE SENSI NG FI ELD EXPERI MENT

This set of conpact read-only optical disks (CD-ROVs) contains a data
col l ection acquired by ground-based and airborne instrunments during the
Ceol ogi ¢ Renpte Sensing Field Experinent (GRSFE). Extensive
docunentation is also included. GRSFE took place in July, Septenber,
and Cctober, 1989, in the southern Mjave Desert, Death Valley, and the
Lunar Crater Vol canic Field, Nevada. The purpose of these CO-ROWs is to
make available in a conpact formthrough the Planetary Data System (PDS)
a collection of relevant data to conduct anal yses in preparation for the
Earth Qobserving System (EQS), Mars Cbserver (MJ, and other m ssions.
The generation of this set of CD-ROVs was sponsored by the NASA

Pl anet ary Ceol ogy and Ceophysics Program the Planetary Data System
(PDS) and the Pilot Land Data System (PLDS).

This AAREADME. TXT file is one of the two nondirectory files located in
the top level directory of each CD-ROM volune in this collection. The
other file, VOLDESC. CAT, contains an overview of the data sets on these
CD-ROVs and is witten in a format that is designed for access hy
conmputers. These two files appear on every volume in the collection.
All other files on the CD-ROVs are located in directories belowthe top
| evel directory

A-116 Appendix A. PDS Data Object Definitions

A.28 VOLUME

The VOLUME object describes aphysical or logical unit used to store or distribute data products
(e.g., amagnetic tape, CD-ROM disk, or floppy disk) that contain directories and files. The
directories and files may include documentation, software, calibration and geometry information
aswell asthe actual science data.

A.28.1 Required Keywords

DATA_SET_ID
DESCRIPTION
MEDIUM_TYPE
PUBLICATION_DATE
VOLUME_FORMAT
VOLUME_ID
VOLUME_NAME
VOLUME_SERIES NAME
VOLUME_SET_NAME
10. VOLUME _SET _ID

11. VOLUME_VERSION_ID
12. VOLUMES

CoNO~WODNE

A.28.2 Optional Keywords

BLOCK_BYTES
DATA_SET_COLLECTION_ID
FILES
HARDWARE_MODEL_ID
LOGICAL_VOLUMES
LOGICAL_VOLUME_PATH_NAME
MEDIUM_FORMAT

NOTE
OPERATING_SYSTEM_ID

10. PRODUCT _TYPE

11. TRANSFER_COMMAND_TEXT
12. VOLUME_INSERT _TEXT

CoNoO~WDNE

A.28.3 Required Objects

1. CATALOG
2. DATA_PRODUCER

Appendix A. PDS Data Object Definitions A-117

A.28.4 Optional Objects

1. DIRECTORY
2. FILE
3. DATA_SUPPLIER

A.285 Examplel (Typica CD-ROM Volume)

Please see the examplein Section A.5 for the CATALOG object.

A.28.6 Example 2 (TapeVolume)

The following VOLUME object example shows how directories and files are detailed when a
volume is stored on an ANSI tape for transfer. This form of the VOLUME object should be used
when transferring volumes of data on media which do not support hierarchical directory
structures (for example, when submitting a volume of data on tape for premastering to CDROM).
The VOLDESC.CAT filewill contain the standard volume keywords, but the values of
MEDIUM_TYPE, MEDIUM_FORMAT and VOLUME_FORMAT should indicate that the
volume is stored on tape.

In this example two files are defined in the root directory of the volume, VOLDESC.CAT and
AAREADME.TXT. Thefirst DIRECTORY object definesthe CATALOG directory which
contains meta data in the included, individual catalog objects. In this example, all the catalog
objects are concatenated into asingle file, CATALOG.CAT. The second DIRECTORY object
defines an INDEX subdirectory containing three files: INDXINFO.TXT, INDEX.LBL, and
INDEX.TAB. Following that directory, the first data directory is defined. Note that the
SEQUENCE_NUMBER keyword indicates the physical sequence of the files on the tape
volume.

PDS_VERSI ON_I D
OBJECT
VOLUME_SERI ES_NAME
VOLUME_SET_NAMVE

PDS3

VOLUME

"M SSI ON TO MARS"

"MARS DI Gl TAL | MAGE MOSAI C AND DI Gl TAL
TERRAI N MODEL"
USA_NASA_PDS_VO 2001_TO VO 2007

VOLUME_SET_|I D

VOLUMES =7

VOLUME_NANME = "MDI M DTM VOLUME 7: GLOBAL COVERAGE"
VOLUME_I D = VO 2007

VOLUME_VERSI ON_| D = "VERSI ON 1"

PUBLI CATI ON_DATE = 1992- 04- 01

DATA SET I D = "VOL/ VO2- M VI S- 5- DTM V1. 0"

MEDI UM TYPE = "8- MM HELI CAL SCAN TAPE"

MEDI UM_FORVAT = "2 GB"

VOLUME_FORMAT = ANSI

HARDWARE_MODEL_| D = "VAX 11/ 750"

A-118

OPERATI NG_SYSTEM | D

DESCRI PTI ON

Appendix A. PDS Data Object Definitions

"VNS 4. 6"
"This volume contains the Mars Digital

Terrain Model and Mosaicked Digital | mge Mdel covering the entire

pl anet at resolutions of 1/64 and 1/ 16 degree/ pi xel.

The vol unme

al so contains Polar Stereographic projection files of the north and
south pole areas from80 to 90 degrees latitude; Mars Shaded Reli ef

Ai rbrush Maps at

1/16 and 1/ 4 degree/pixel; a gazetteer of Mars

features; and a table of updated view ng geonetry files of the
Vi ki ng EDR i mages that conprise the MDM"

M SSI ON_NANE
SPACECRAFT_NANME
SPACECRAFT_I D

OBJECT
| NSTI TUTI ON_NANE
FACI LI TY_NANME
FULL_NAVE
DI SCI PLI NE_NANME
ADDRESS_TEXT

END_OBJECT

OBJECT
ACATALOG
END_OBJECT

OBJECT
FI LE_NAVE
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FI LE_NAVE
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
NAVE

OBJECT
FI LE_NAVE
RECORD_TYPE

SEQUENCE._ NUMBER

END_OBJECT
END_OBJECT

OBJECT
NAVE

VI KI NG
{ VI KING_ORBI TER_1, VI KI NG_ORBI TER 2}
{ VoL, Vor}

DATA_PRODUCER

"U S. . GS. FLAGSTAFF"

"BRANCH OF ASTROGEOLOGY"

"Eric M Eliason"

"1 MAGE PROCESSI NG'

"Branch of Astrogeol ogy

United States Ceol ogical Survey
2255 North Gemini Drive

Fl agstaff, Arizona. 86001 USA"
DATA_PRODUCER

CATALOG
" CATALOG. CAT"
CATALOG

FI LE
"VOLDESC. CAT"
STREAM

1

FI LE

FI LE

" AAREADME. TXT"
STREAM

2

FI LE

DI RECTORY
CATALOG

FI LE

" CATALOG. CAT"
STREAM

3

FI LE

DI RECTORY

DI RECTORY
DOCUNMENT

Appendix A. PDS Data Object Definitions

OBJECT
FI LE_NAVE
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FI LE_NAVE
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

OBJECT
NAVE

OBJECT
FI LE_NAVE
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FI LE_NAVE
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FI LE_NAVE
RECORD_TYPE
RECORD BYTES
FI LE_RECORDS
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

OBJECT
NAVE

OBJECT
FI LE_NAVE
RECORD_TYPE
RECORD BYTES
FI LE_RECORDS
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

END_OBJECT
END

FI LE

"VOLI NFO. TXT"
STREAM

4

FI LE

FI LE

" DOCI NFO. TXT"
STREAM

5

FI LE

DI RECTORY

DI RECTORY
I NDEX

FI LE

"I NDXI NFO. TXT"
STREAM

6

FI LE

FI LE

"1 NDEX. LBL"
STREAM

7

FI LE

FI LE

"1 NDEX. TAB"
FI XED_LENGTH
512

6822

8

FI LE

DI RECTORY

DI RECTORY
ME0ONXXX

FI LE
"MONO12. | MG'
FI XED_LENGTH
964

965

10

FI LE

DI RECTORY

VOLUME

A-119

A-120 Appendix A. PDS Data Object Definitions

A.28.7 Example 3 (Logical Volumesin an Archive Volume)

The following examplesiillustrate the use of the VOLUME object in the top level and at the
logical volume level of an archive volume. Note that the VOLUME object isrequired at both
levels.

In these examples, the CD-ROM s structured as three separate logical volumes with root
directories named PPS/, UVS and RSS/. An additional SOFTWARE directory is supplied at
volume root for use with all logical volumes.

A.28.7.1 Logical Volumes—Volume Object (root level)

The example below, illustrates the use of the VOLUME object at the top level of a CD-ROM
(i.e., aphysical volume) containing several logical volumes. Note the values of the keywords
DATA_SET_ID, LOGICAL_VOLUMES, and LOGICAL_VOLUME_PATH_NAME, which list
the compl ete set of values relevant to this volume.

PDS3

VOLUME

"VOYAGERS TO THE OUTER PLANETS"
"PLANETARY RI NG OCCULTATI ONS FROM

PDS_VERSI ON_| D
OBJECT
VOLUVE_SERI ES_NAVE
VOLUVE_SET_NAME

VOYAGER'"
VOLUVE_SET I D = "USA_NASA_PDS_VG 3001"

VOLUMES =1

MEDI UM TYPE = " CD- ROV

VOLUVE_FORMAT = "| SO 9660"

VOLUVE_NANE = "VOYAGER PPS/ UVS/ RSS RI NG OCCULTATI ONS"
VOLUVE_| D = "VG 3001"

VOLUVE_VERSI ON | D = "VERSI ON 1"

PUBL| CATI ON_DATE = 1994- 03- 01

DATA SET I D {"V&- SR/ UR/ NR- PPS- 4- OCC- V1. 0",
"VGL/ V&- SR/ UR/ NR- UVS- 4- OCC- V1. 0",
"VGL/ V&- SR/ UR/ NR- RSS- 4- OCC- V1. 0"}

LOG CAL_VOLUMES 3

LOG CAL_VOLUVE_PATH_NAME {"PPS/", "WS/", "RSS/"}

DESCRI PTI ON "This volume contains the Voyager 1 and
Voyager 2 PPS/UVS/RSS ring occultation and ODR data sets. Included

are data files at a variety of levels of processing, plus ancillary
geonetry, calibration and trajectory files plus software and

docunent ati on.

This CD-ROMis structured as three separate |ogical volunes with
root directories named PPS/, WS/ and RSS/. An additional SOFTWARE

directory is supplied at volunme root for use with all [ogical
vol unmes. "
OBJECT

DATA PRODUCER

"PDS RI NGS NODE"

"NASA AMES RESEARCH CENTER"
"DR. MARK R SHOMALTER'
"Rl NGS"

“Mail Stop 245-3

| NSTI TUTI ON_NANE
FACI LI TY_NANME
FULL_NAVE

DI SCI PLI NE_NANE
ADDRESS_TEXT

Appendix A. PDS Data Object Definitions A-121

NASA Anmes Research Center
Mffett Field, CA 94035-1000"

END_OBJECT = DATA_ PRODUCER

OBJECT = CATALOG
DATA SET_ID = "VG2- SR/ UR NR- PPS- 4- OCC- V1. 0"
LOG CAL_VOLUME_PATH_NANE = "PPS/ "
AM SSI ON_CATALOG = "M SSI ON. CAT"
Al NSTRUVENT _HOST_CATALOG = "| NSTHOST. CAT"
Al NSTRUMVENT _CATALOG = "| NST. CAT"
ADATA_SET_COLLECTI ON_CATALOG = "DSCOLL. CAT"
ADATA_SET_CATALOG = " DATASET. CAT"
AREFERENCE_CATALOG = "REF. CAT"
APERSONNEL_CATALOG = " PERSON. CAT"

END_OBJECT = CATALOG

OBJECT = CATALOG
DATA SET_ID = "VGL/ V&- SR/ UR/ NR- UVS- 4- OCC- V1. 0"
LOG CAL_VOLUME_PATH_NANE = "uvs "
AM SSI ON_CATALOG = "M SSI ON. CAT"
Al NSTRUVENT _HOST_CATALOG = "| NSTHOST. CAT"
Al NSTRUMVENT _CATALOG = "| NST. CAT"
ADATA_SET_COLLECTI ON_CATALOG = "DSCOLL. CAT"
ADATA_SET_CATALOG = " DATASET. CAT"
AREFERENCE_CATALOG = "REF. CAT"
APERSONNEL_CATALOG = " PERSON. CAT"

END_OBJECT = CATALOG

OBJECT = CATALOG
DATA SET_ID = "VGL/ V&@- SR/ UR/ NR- RSS- 4- OCC- V1. 0"
LOG CAL_VOLUME_PATH_NANE = "RSS/"
AM SSI ON_CATALOG = "M SSI ON. CAT"
Al NSTRUVENT _HOST_CATALOG = "| NSTHOST. CAT"
Al NSTRUVENT _CATALOG = "| NST. CAT"
ADATA_SET_COLLECTI ON_CATALOG = "DSCOLL. CAT"
ADATA_SET_CATALOG = " DATASET. CAT"
AREFERENCE_CATALOG = "REF. CAT"
APERSONNEL_CATALOG = " PERSON. CAT"

END_OBJECT = CATALOG

END_OBJECT = VOLUME
END

A.28.7.2 Logical Volumes—Volume Object (logical volume level)

The example below, illustrates the use of the VOLUME object required at the top level of a
logical volume. Note that at thislevel the keywords DATA_SET ID and
LOGICAL_VOLUME_PATH_NAME contain only the values relevant to the current logical
volume. Also, the keyword LOGICAL_VOLUMES does not appear here.

PDS_VERSI ON_I D
OBJECT
VOLUME_SERI ES_NAME

PDS3
VOLUME
"VOYAGERS TO THE OUTER PLANETS"

A-122

VOLUVE_SET_NAVE

VOLUVE_SET_|I D
VOLUVES

MEDI UM TYPE
VOLUVE_FORMAT
VOLUVE_NANME

VOLUME_|I D

VOLUMVE_VERSI ON_| D

PUBLI CATI ON_DATE

DATA SET_ID

LOG CAL_VOLUVE_PATH_NAME

DESCRI PTI ON
Voyager 2 PPS ring occultation
a variety of levels of processi
calibration and trajectory fil

OBJECT
| NSTI TUTI ON_NANE
FACI LI TY_NANME
FULL_NAVE
DI SCI PLI NE_NANE
ADDRESS_TEXT

END_OBJECT

OBJECT
DATA SET_ID
LOG CAL_VOLUME_PATH_NANE
AM SSI ON_CATALOG
Al NSTRUVENT _HOST_CATALOG
Al NSTRUVENT _CATALOG
ADATA_SET_COLLECTI ON_CATALOG
ADATA_SET_CATALOG
AREFERENCE_CATALOG
APERSONNEL_CATALOG
END_OBJECT

END_OBJECT
END

Appendix A. PDS Data Object Definitions

"PLANETARY RI NG OCCULTATI ONS
FROM VOYAGER"

"USA NASA PDS VG 3001"

1

"1 SO 9660"

"VOYAGER PPS/ UVS/ RSS RI NG
OCCULTATI ONS"

"VG_3001"

"VERSI ON 1"

1994-03-01

"V&- SR/ UR/ NR- PPS- 4- OCC- V1. 0"

"PPS/ "

"This | ogi cal volume contains the

data sets. Included are data files

ng, plus ancillary geonetry,

es plus software and docunentati on.

DATA_PRODUCER

"PDS RI NGS NODE"

"NASA AMES RESEARCH CENTER"
"DR. MARK R SHOWMALTER"

"Rl NGS"

“Mail Stop 245-3

NASA Anmes Research Center
Moffett Field, CA 94035-1000"
DATA_PRODUCER

CATALOG

"V@&- SR/ UR/ NR- PPS- 4- CCC- V1. 0"
" PPS/ "

"M SSI ON. CAT"
"1 NSTHOST. CAT"
"I NST. CAT"

" DSCOLL. CAT"

" DATASET. CAT"
" REF. CAT"

" PERSON. CAT"
CATALOG
VOLUME

at

Appendix A. PDS Data Object Definitions A-123

A.29 WINDOW

The WINDOW object identifies arectangular area of interest within an IMAGE object.
WINDOW objects may not serve as the primary object in a data product, nor may they appear
outside the context of an IMAGE object. The areas described by separate WINDOW objects
may overlap in whole or in part, but WINDOW object definitions may not be nested.

The boundaries and physical attributes of the WINDOW object are always determined with
reference to the enclosing (parent) IMAGE object. That is, "first” is defined with respect to the

LINE DISPLAY_DIRECTION and SAMPLE DISPLAY_ DIRECTION of the IMAGE and the
WINDOW must have the same SAMPLE_TY PE and SAMPLE_BITS asthe IMAGE. When
calculating the FIRST_LINE_SAMPLE of aWINDOW object, you should not include any prefix
bytes present in the parent IMAGE object. Thefirst line_sample of the image is the pixel
adjacent to the last byte in the line prefix. WINDOW objects may not have prefix or suffix bytes.

Note: For clarification of what constitutes a"line sample”, refer to the IMAGE data object
definition in this appendix.

A.29.1 Required Keywords

FIRST_LINE
FIRST_LINE_SAMPLE
LINES
LINE_SAMPLES
DESCRIPTION

agrwbdPE

A.29.2 Optional Keywords

1. NAME
2. TARGET_NAME
3. psdd

A.29.3 Required Objects

None

A.29.4 Optional Objects

None

A-124

A.29.5 Example

Appendix A. PDS Data Object Definitions

This example is extracted from an early draft of a Stardust Mission datafile. In this case the
WINDOW object is being used to identify the sectionof a sparse IMAGE object which contains

actual data.

PDS_VERSI ON_I D
RECORD_TYPE

OBJECT
LI NES
LI NE_SAMPLES
SAMPLE_TYPE
SAMPLE_BI TS
SAMPLE_BI T_MASK
MAXI MUM
M NI MUM
LI NE_PREFI X_BYTES
LI NE_SUFFI X_BYTES
MEAN
STANDARD_DEVI ATI ON
SATURATED Pl XELS
CHECKSUM

OBJECT
DESCRI PTI ON
TARGET_NAVE
FI RST_LI NE
FI RST_LI NE_SAVPLE
LI NES
LI NE_SAMPLES

END_OBJECT

END_OBJECT

END

PDS3
STREAM

I MAGE

1024

1024

MSB_UNSI GNED_| NTEGER
16
2#0000111111111111#
2877

0

20

24

63. 7351

174. 729

0

66831091

W NDOW
"Stellar imge"
" VEGA'

336

336

351

351

W NDOW

| MAGE

Appendix A. PDS Data Object Definitions A-125

I

AAREADME.TXT, A-118

ALIAS object
definition, A-3

ARRAY object, A-1, A-39
definition, A-4

ASCII tables, A-97

AXIS ITEMS, A-4

AXIS NAME, A-80

B I

BAND_BIN, A-78
BAND_STORAGE_TYPE, A-65
BANDS, A-65
binary tables, A-100
spare bytes, A-100
BIT_COLUMN object, A-20, A-100
definition, A-8
BIT_ELEMENT object, A-1
definition, A-12
BYTES, A-18, A-55, A-97

C I

CATALOG object
definition, A-13
CHECKSUM, A-67
COLLECTION object, A-1, A-4, A-6, A-39
definition, A-16
COLUMN object, A-3, A-8, A-85, A-96
and CONTAINER, A-23
definition, A-18
vectors, A-18
CONTAINER object, A-18
definition, A-23
in TABLE, A-113

D I

data objects, A-1
ALIAS, A-3
ARRAY, A-4

A-2

BIT_COLUMN, A-8

BIT_ELEMENT, A-12

CATALOG, A-13

COLLECTION, A-16

COLUMN, A-18

CONTAINER, A-23

DATA PRODUCER, A-30

DATA SUPPLIER, A-32

DIRECTORY, A-34

DOCUMENT, A-36

ELEMENT, A-39

FILE, A-41

GAZETTEER TABLE, A-45

HEADER, A-55

HISTOGRAM, A-57

HISTORY, A-60

IMAGE, A-64, A-74

INDEX_TABLE, A-69

PALETTE, A-74

QUBE, A-77

SERIES, A-85

SPECTRUM, A-90

SPICE_KERNEL, A-93

TABLE, A-96

TEXT, A-118

VOLUME, A-120

WINDOW, A-128
DATA_PRODUCER object, A-32

definition, A-30
DATA_SET object, A-41
DATA_SET _ID, A-125, A-126
DATA_SUPPLIER object, A-30

definition, A-32
DIRECTORY object, A-122

definition, A-34
DOCINFO.TXT, A-118
document

ASCII version, A-36
DOCUMENT object

definition, A-36
documentation

file labelling

DOCUMENT object, use of, A-36

documents

and DOCUMENT object, A-36

Appendix A. PDS Data Object Definitions

Appendix A. PDS Data Object Definitions A-3

. 1

ELEMENT object, A-1, A-6
definition, A-39

%
field delimiters, A-115
FILE object, A-34
definition, A-41
implicit, A-41
table of required and optional elements, A-42
FILE NAME, A-41
FILE STATE, A-78

I ——..

GAZETTEER_TABLE object
definition, A-45

GROUP
in HISTORY object, A-60
in QUBE, A-78

I

HEADER object, A-105
definition, A-55
HISTOGRAM object, A-78
definition, A-57
HISTORY object
and QUBE, A-78
definition, A-60

I I

IMAGE object, A-74, A-78, A-128
and PALETTE, A-74
definition, A-64
stored with TABLE object, A-112
used with WINDOW object, A-130
IMAGE_MAP_PROJECTION object, A-78
INDEX_TABLE
contents, A-69
INDEX_TABLE object
definition, A-69
INDEX_TYPE, A-69

A-4 Appendix A. PDS Data Object Definitions

INTERCHANGE FORMAT, A-96
|SIS Software

QUBE object, A-77
ITEM_BITS, A-8
ITEM_BYTES, A-18
ITEM_OFFSET, A-8, A-18
ITEMS, A-8, A-18

-« |

KERNEL_TYPE
table of file extensions, A-93

L I

line terminators and delimiters

vis-a-vis byte counts in objects

exclusion of line terminators and delimitersin objects, A-18

LINE DISPLAY DIRECTION, A-65
LINE PREFIX BYTES, A-64
LINE_ SAMPLES, A-64
LINE SUFFIX BYTES, A-64
LINES, A-64
LOGICAL_VOLUME_PATH_NAME, A-125, A-126
LOGICAL_VOLUMES, A-125, A-127

M I

MAXIMUM_SAMPLING_PARAMETER, A-85
MEDIUM_FORMAT, A-122

MEDIUM_TY PE, A-122
MINIMUM_SAMPLING_PARAMETER, A-85

N I

NAIF Toolkit, A-93
NAME, A-41

@) I

object definitions
URL, A-1
objects. See data object, See catalog objects
objects, data
SERIES
use of sparefields

Appendix A. PDS Data Object Definitions A-5

use of sparefields, A-117
SPECTRUM
use of sparefields
use of sparefields, A-117

.

PALETTE object, A-78

definition, A-74
PDS objects. See data objects, See catalog objects
prefix or suffix data

in QUBE object, A-83

in TABLE object, A-113, A-117
primitive data objects, A-1
primitive objects

ARRAY, A-4

BIT _ELEMENT, A-12

COLLECTION, A-16

ELEMENT, A-39
PRODUCT ID, A-94

9o

QUBE object
and HISTORY object, A-78
definition, A-77

I —.

RECORD_BYTES, A-103
RECORD_TYPE, A-42
REPETITIONS, A-24
ROW_BYTES, A-104
ROW_PREFIX_BYTES, A-64, A-86

use, A-112
ROW_SUFFIX_BYTES, A-64

use, A-112

I T——.

SAMPLE, A-74
SAMPLE _BITS, A-64
SAMPLE _DISPLAY_DIRECTION, A-65
SAMPLE TYPE, A-64
sampling parameter data
in SERIES object, A-89

A-6 Appendix A. PDS Data Object Definitions

SAMPLING_PARAMETER_INTERVAL, A-85
SCALING_FACTOR, A-67
SEQUENCE_NUMBER, A-34, A-122
sequential media, A-34
SERIES object, A-18, A-103

definition, A-85

TIME_SERIES, A-85
SOFTINFO.TXT, A-118
SOURCE_PRODUCT ID, A-93
spare bytes, A-113
SPARE bytes, A-100
sparefields

usein TABLE, SPECTRUM and SERIES objects

TABLE
use of sparefields
use of sparefields, A-117

SPECTRUM object, A-18, A-103

definition, A-90
SPICE kernels

labelling, A-93
SPICE system

kernel file extensions, A-93
SPICE_KERNEL object

definition, A-93
START_BYTE, A-4, A-16, A-39, A-97
START_TIME, A-85
STOP_TIME, A-85
STRUCTURE pointer, A-101

I

TABLE object, A-18, A-64, A-78
and CONTAINER, A-113
ASCII field delimiters, A-115
ASCII tables, A-97
binary tables, A-100
definition, A-96
INDEX_TABLE, A-69
more than onein asinglefile, A-109
PALETTE, A-74
SERIES object, A-85
spare bytes, A-113
SPARE bytes, A-100
SPECTRUM object, A-90
stored with IMAGE object, A-112

Appendix A. PDS Data Object Definitions A-7

STRUCTURE pointer, A-101
variations, A-103
tables
multiple tablesin single file, A-109
text
plain text formatting, A-118
TEXT object
definition, A-118

V I

VICAR headers, A-55

VOLDESC.CAT, A-13, A-122

VOLINFO.TXT, A-118

VOLUME object, A-13, A-30, A-32, A-34, A-41, A-125
definition, A-120

VOLUME_FORMAT, A-122

{%
WINDOW object

definition, A-128

example, A-130

Appendix B. Complete PDS Catalog Object Set B-1

Appendix B. Complete PDS Catalog Object
Set

This appendix provides a complete set of the PDS catal og objects. Each section includes a
description of the object, lists of keywords and sub-objects, guidelines to follow in assigning
values, and a specific example of the object. The catalog objects provide high-level information
suitable for loading a database to facilitate searches across data sets, collections and volumes.

The catalog objects included on a PDS volume also provide local, high-level documentation. The
full set of catalog objectsisrequired in the CATALOG directory of every PDS archive volume.
See the File Specification and Naming chapter of this document for pointer and file names used
with catalog objects.

Not every object described in this section isrequired in all cases. A PDS Central Node Data

Engineer will supply a set of blank catal og object templates to be completed for any specific
delivery, and can also supply additional examplesif desired.

Description Field Formatting

The examples in the following sections conform to the current recommendations with respect to
format and content. Linesin descriptive text fields (DATA_SET _DESC,
INSTRUMENT_DESC, etc.) should not exceed 72 characters, including the <CR><LF> line
delimiters. The underlining convention for headings and subheadings provide organization levels
for human readers and auto-formatting routines:

Heading Heading Indent Text Indent Under scoring
Character
Primary 2 characters 4 characters =
Secondary 4 characters 6 characters —

Primary, or main, headings are double-underlined through the use of the equal-sign key (=)
which corresponds to ASCII decimal 61. Secondary, or subheadings, are single-underlined
through the use of the hyphen key (-) which corresponds to ASCII decimal 45. This underlining
convention enhances legibility, and in the future will facilitate the creation of hypertext links.

Also, PDS has adopted a convention for indenting primary headings, secondary headings, and
textual descriptions to facilitate readability and to make a better presentation. Primary headings
start at Column 3. Text under primary headings and secondary headings starts at Column 5. Text
under secondary headings starts at Column 7.

Again for ease of readability, there should be 2 blank lines before the start of a primary or
secondary heading. If a secondary heading immediately follows a primary heading, then only 1
blank line should separate the secondary heading from the primary heading.

B-2 Appendix B. Complete PDS Catalog Object Set

PDS has developed a Windows based program (FORMAT70) that will automatically format the
description fields of any catalog template.

Following is atemplate layout for aDATA_SET_DESC field. This example assumes the
keyword DATA_SET_DESC itself startsin the first byte.

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012

DATA SET_DESC ="
(blank line)
(blank line)

Primary Heading - starts at Colum 3

Text under headings start at Colum 5
nore text starting at Columm 5. ..
(blank line)
(blank line)
Secondary Heading - starts at Columm 5
Text under subheadi ngs start at Colum 7
nore text starting at Columm 7...
(blank line)
(blank line)
Primary Heading - starts at Colum 3

(blank line)
Secondary Heading - starts at Columm 5

Text under subheadi ngs start at Columm 7
nmore text starting at Colum 7...

Order of Keywords and Sub-Objects

The examples in the following sections illustrate the preferred ordering for keywords and sub-
objects. The order used provides alogical flow that makes the catalog files somewhat easier for a
human reader to follow.

Appendix B. Complete PDS Catalog Object Set B-3

Chapter Contents

Appendix B. Complete PDS Catal0g ODJECt SEL........cceiiiiriieiieieiee s B-1
o I N I N e TSP UPR B-4
B.2 DATA_SET COLL _ASSOC DATA_SETS...cooiiieirseeseseseseesesesesessesnesnen, B-10
B.3 DATA_SET COLLECTION _REF INFOocociiiiiiieeeeseeseesessseseessssessesssssenes B-11
B.4 DATA_SET COLLECTION....cooiiitieiieeeesee ettt st B-12
B.5 DATA_SET COLLECTION_INFO....cciiiiiiiieeieeee et B-15
BB DATA _SET HOST ...ttt es s ees s s es s sn e sse s sanenes B-17
B.7 DATA_SET INFORMATIONooiiiiiiiie et B-18
B.8 DATA_SET MAP_PROJECTIONcoiiiiiiiieeie et B-21
B.9 DATA_SET _MAP PROJECTION INFO......cccoocoiiiiiirieeseesrseseesseseeseneseeenennenn, B-24
B.10 DATA_SET REFERENCE_INFORMATIONccoiiiiiiiiiieie e B-26
B.11 DATA_SET TARGET ...ttt s nee s B-27
B.12 DS MAP_PROJECTION_REF INFOocoociiiiieeeeeieeeresessessessesesssseseesesssenesnenn, B-28
B.13 IMAGE_MAP_PROJECTIONcoiiiiiieiieeiee ittt s B-29
B.14 INSTRUMENT ...ttt e rb e st e nbe e nneenee s B-34
B.15 INSTRUMENT HOST ...ttt st ne e B-38
B.16 INSTRUMENT_HOST_INFORMATIONcocoiiiiiiiieniee et B-40
B.17 INSTRUMENT_HOST_REFERENCE_INFO.......cccccoiiiiiiiiiieeeee e B-41
B.18 INSTRUMENT _INFORMATION ...ttt B-42
B.19 INSTRUMENT_REFERENCE _INFO.....cccoiiiiiiiiieee e B-45
B.20 INVENTORY ...ttt sttt st b e st e be e sae e e beesneeenee s B-46
B.21 INVENTORY_DATA_SET INFO ...t B-48
B.22 INVENTORY_NODE_MEDIA_INFO ..o B-49
B.23 MISSION ...ttt st e bt e b e e ae e st e e s ae e e be e aeeenneas B-50
B.24 MISSION _HOST ...ttt et e be e e B-55
B.25 MISSION_INFORMATION.....ooiiiiieie ettt B-56
B.26 MISSION_REFERENCE_INFORMATIONooiiiiiiieieeeee e B-58
B.27 MISSION_TARGET ...ttt et s e e e B-59
B.28 PERSONNEL ...ttt s ettt e b seeenee s B-60
B.29 PERSONNEL_ELECTRONIC MAIL ..oooiiiiii e B-62
B.30 PERSONNEL_INFORMATIONuoiiiiie et B-63
B.31 REFERENCE........ oo ettt st ae e enee s B-64
B.32 SOFTWARE ... oottt bbbt st sae e e be e aeeeeeas B-71
B.33 SOFTWARE_INFORMATION ...ttt ettt st B-73
B.34 SOFTWARE_ONLINE........oi ettt st B-74
B.35 SOFTWARE _PURPOSE....... .ottt B-75
B.30 TARGET ...ttt ettt he e b e st he e b ae e eanean B-76
B.37 TARGET_INFORMATIONooiiiiiiiiiieiie ittt sttt saeeeeeas B-78
B.38 TARGET_REFERENCE_INFORMATIONcccoiiiiiiiieiieenee e B-79

B-4 Appendix B. Complete PDS Catalog Object Set

B.1 DATA_SET

The DATA_SET catalog object is used to submit information about a data set to the PDS. The
DATA_SET object includes afree-form text description of the data set as well as sub-objects for
identifying associated targets, hosts, and references.

B.1.1 Required Keywords

1. DATA_SET_ID

B.1.2 Optional Keywords

None

B.1.3 Required Objects

DATA_SET_HOST
DATA_SET_INFORMATION
DATA_SET_REFERENCE_INFORMATION
DATA_SET_TARGET

El Ol

B.1.4 Optional Objects

None

B.1.5 Usage Notes

One DATA_SET _INFORMATION catal og object must be completed for each data set. One
DATA_SET_TARGET catalog object must be completed for each target associated with the data
set. That is, if there is more than one target, this object is repeated. Similarly, one

DATA_SET HOST catalog object must be completed for each host/instrument pair associated
with the data set, and one DATA_SET REFERENCE_INFORMATION catalog object is
required for each individual reference associated with the data set. All references should be
included that are relevant to providing more detailed / specific data set information; such as,
description of the data set, calibration procedures, processing software, data set documentation,
review results, etc. These references may include published articles, books, papers, electronic
publications, etc.

Appendix B. Complete PDS Catalog Object Set B-5

Note that the DATA_SET TARGET, DATA_SET HOST and DATA_SET REFERENCE
objects associate a particular target, host or reference ID with the data set, but do not themselves
define the attributes of the corresponding target, host or reference. For each new ID referenced in
one of these fields, a high-level description must be provided in the corresponding catal og object.
For example, if the REFERENCE_KEY _ID listed inaDATA_SET_REFERENCE object does
not already exist, anew REFERENCE object, defining that REFERENCE_KEY _ID, must also
be submitted with the delivery. The Central Node data engineers can assist in locating existing
catalog objects that may be referenced in any of the above fields.

B.1.6 Example

/* Tenpl ate: Data Set Tenpl ate Rev: 1993-09-24 */
/* */
/* Note: Conplete one for each data set. Identify nultiple targets associated with */
/* the data set by repeating the 3 lines for the DATA SET_TARGET obj ect. */
/* Identify nultiple hosts associated with the data set by repeating the 4 lines */
/* for the DATA SET_HOST object. Identify nultiple references associ ated */
/* with the data set by repeating the 3 lines of the */
/* DATA SET_REFERENCE_| NFORMATI ON obj ect . */
/* Hierarchy: DATA_SET */
/* DATA_SET_| NFORMATI ON */
/* DATA_SET_TARGET */
/* DATA_SET_HOST */
/* DATA_SET_REFERENCE_| NFORVATI ON */
PDS_VERSI ON_I D = PDS3
LABEL_REVI SI ON_NOTE = "1998-07-01, Richard Sinpson (STANFORD), initial;"
RECORD_TYPE = STREAM
OBJECT = DATA SET

DATA_SET_I D = " MAN V- RDRS- 5- GVDR- V1. 0"

OBJECT DATA_SET_| NFORMATI ON

DATA_SET_NAME "M3GN V RDRS DERI VED GLOBAL VECTOR DATA RECORD V1. 0"

DATA_SET_COLLECTI ON_MEMBER FLG N
DATA_OBJECT_TYPE TABLE
ARCHI VE_STATUS ARCHI VED

1990- 08-01T00: 00: 00
1993-12-31T23: 59: 59
1994-07-01

"M CHAEL J. MAURER'

DATA_SET_RELEASE_DATE
PRODUCER_FULL_NANVE
DETAI LED_CATALOG FLAG
DATA_SET_TERSE_DESC

5
e
=
m

N
"The G obal Vector Data Record (GVDR)
is a sorted collection of scattering and
em ssi on neasurenents fromthe Magel |l an
M ssi on”
DATA_SET_DESC ="

Data Set Overview

The d obal Vector Data Record (GVDR) is a sorted collection of scattering and em ssion
nmeasurenents fromthe Magell an M ssion. The sorting is into a grid of equal area 'pixels'
distributed regularly about the planet. For data acquired fromthe sanme pixel but in

di fferent observing geonetries, there is a second |evel of sorting to accommopdate the
different geonetrical conditions. The 'pixel' dinmension is 18.225 km The GVDR i s presented
in Sinusoidal Equal Area (equatorial), Mercator (equatorial), and Pol ar Stereographic (polar)
proj ections.

The GVDR is intended to be the npbst systenatic and conprehensive representation of the

el ectromagnetic properties of the Venus surface that can be derived from Magel | an data at
this resolution. It should be useful in characterizing and conparing distinguishabl e surface
units.

Par aneters

The Magel | an data set conprises three basic data types: echoes fromthe nadir-view ng
altimeter (ALT), echoes fromthe oblique backscatter synthetic aperture radar (SAR) imagi ng

B-6 Appendix B. Complete PDS Catalog Object Set

system and passive radio thermal em ssion nmeasurenments made using the SAR equi pment. The
objective in conpiling the G/DR is to obtain an accurate estimte of the surface
backscattering function (sonetines called the specific backscatter function or 'signa-zero')
for Venus fromthese three data types and to show its variation with incidence (polar) angle,
azi muthal angle, and surface |ocation.

The ALT data set has been analyzed to yield profiles of surface el evation

[FORD&PETTENG LL1992] and estimates of surface Fresnel r